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INTRODUCTION

There are various ways to analyze social phe-
nomena. The traditional, qualitative, and 
quantitative approaches involve specialized 
languages and seemingly incompatible meth-
ods – but such phenomena can also be framed 
in terms of set relations, as it is often the case 
in common, everyday language. For instance, 
poverty research can either employ quantita-
tive, nationally representative samples, or 
they can use case studies to unfold particular, 
exemplar life stories that are usually obscured 
by numbers, or it can be framed in a set theo-
retical perspective, as recently demonstrated 
by Ragin and Fiss (2017).

Ragin and Fiss studied the relation between 
poverty and various configurational patterns 
that include race, class, and test scores and 
found that white people are mainly character-
ized by multiple advantages that protect them 
from poverty, while there are configurations of 
disadvantages that are mainly prevalent in black 
people. These disadvantages do not necessarily 

lead to poverty, with an important exception: 
when they combine with black women.

Being black, being a woman, and having 
children, along with a configuration of disad-
vantages, are factors that are more than suffi-
cient to explain poverty. This approach is less 
concerned about the relative effects of each 
independent variable included in the model, 
but rather about identifying membership in a 
particular set (in the current example, of dis-
advantaged black women). It is a set relational 
perspective, more precisely with a focus on 
set intersections to explain social phenomena.

This chapter begins with a short back-
ground of set theory and the different types 
of sets that are used in the social sciences. 
It presents the most important set opera-
tions that are commonly used in the math-
ematical framework behind a set theoretical 
methodology, and it shows how to formulate 
hypotheses using sets and exemplifies how 
to calculate set membership scores via the 
different calibration methods. Finally, it pre-
sents important concepts related to necessity 
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and sufficiency and ends with a discussion 
about how to apply set theory in Qualitative 
Comparative Analysis (QCA).

SHORT BACKGROUND OF SET 
THEORY

Formally initiated by philosopher and math-
ematician Georg Cantor at the end of the 
19th century (Dauben, 1979), classical set 
theory became part of the standard founda-
tion of modern mathematics, well suited for 
the treatment of numbers (Pinter, 2014). 
Elementary mathematics is embedded with 
notions such as the set of real numbers, or the 
set of natural numbers, and formal demon-
strations almost always employ sets and their 
elements as inherent, prerequisite properties 
of a mathematical problem.

It is nowadays called the naive set theory 
(Halmos, 1974), and was later extended to 
other versions, but the basic properties pre-
vailed. A set can be defined as a collection of 
objects that share a common property. If an 
element x is a member of a set A, it is written 
as x ∈ A, and if it is not a member of that set, 
it is written as x ∉ A. This is the very essence 
of what is called binary crisp sets, where 
objects are either in or out of a set.

For any object, it can be answered with ‘yes’ 
if it is inside the set and ‘no’ if it is not. There 
are only two possible truth values in this ver-
sion: 1 (true) and 0 (false) – a country is either 
in, or outside the EU, a law is either passed or 
not passed, an event either happens or does not 
happen, etc. It has certain roots into Leibniz’s 
binary mathematics from the beginning of the 
18th century (Aiton, 1985), later formalized 
into a special system of logics and mathemat-
ics called Boolean algebra, to honor George 
Boole’s work in the mid 19th century.

In formal notation, a membership function 
can be defined to attribute these two values:
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∉
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It is perhaps worth mentioning that the work of 
all these people was influenced by the 
Aristotelian logic, a bivalent system based on 
three principles (laws of thought): the principle 
of identity, the principle of non-contradiction,  
and the principle of excluded middle. A 
single truth value could be assigned for any 
proposition (either true, or false), but this was 
only possible for past events. No truth value 
could be assigned to a proposition referring 
to the future, since a future event has not yet 
happened. Future events can be treated deter-
ministically (what is going to be, is going to 
be) or influenced by peoples’ free will (we 
decide what is going to be), leading to a para-
dox formulated by Aristotle himself.

A solution to this problem was proposed 
by the Polish mathematician Łukasiewicz 
(1970), who created a system of logic at the 
beginning of the 20th century that extends 
the classical bivalent philosophy. His system 
(denoted by Ł3) presents not just two but three 
truth values:
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Łukasiewicz’s system (using a finite number 
of values) was eventually generalized to  
multivalent systems with n = v − 1 values, 
obtained through a uniform division of the 
interval [0, 1]:
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While some phenomena are inherently bivalent 
(an element is either in, or out of a set), there are 
situations where two values are unable to 
describe the whole picture. A social problem is 
not necessarily solved or unsolved but can be 
more or less dealt with. A country is not simply 
rich or poor, but it can be more or less included 
in the set of rich countries. There is a certain 
degree of uncertainty regarding the truth value, 
which was modeled in the middle of the 20th 
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century by another great mathematician who 
laid out the foundations of the fuzzy sets 
(Zadeh, 1965). These types of sets have a con-
tinuous (infinite) number of membership 
values, in the interval bounded by 0 (completely 
out of the set) to 1 (completely in the set).

SET OPERATIONS

Set operations are mathematical transforma-
tions that reflect the logical relations between 
sets to reflect various configurations that 
involve intersections, unions, and/or nega-
tions. The simplest way to think about these 
operations is an analogy using basic mathe-
matical algebra: addition, subtraction, multi-
plication, and division are all very simple –  
but they are essential operations to build upon. 
In set theory, there are essentially three main 
operations that are used extensively in the set 
theoretical research and comparative analysis: 
set intersection, set union, and set negation.

These operations perform differently for 
crisp and fuzzy sets, but the fuzzy version is 
more general and can be applied to crisp situ-
ations as well.

Set Intersection (Logical AND)

In the crisp version, the goal of this operation 
is to find the common elements of two sets. A 
truth value is involved, that is, it is assigned a 
‘true’ value if the element is common and a 
‘false’ if otherwise. Out of the four possible 
combinations of true/false values in Table 
57.1 for the membership in the two sets, only 
one is assigned a ‘true’ value for the intersec-
tion, where both individual values are true.

This is a called a ‘conjunction’, meaning 
the logical AND expression is true only when 
both sets are (conjunctively) true. It is usually 
denoted using the ‘∩’ or multiplication ‘·’ 
signs.

The fuzzy version of the set intersection 
formula is obtained by calculating the mini-
mum between two (or more) values:

 ∩ =A B min A B( , ) (1)

As the minimum between 0 (false) and any 
other truth value is always 0, this formula 
holds for the data from Table 57.1, where a 
minimum equal to 1 (true) is obtained only 
when both values are equal to 1.

Set Union (Logical OR)

The counterpart of the set intersection is the 
set union, used to form larger and larger sets 
by pulling together all elements from all sets. 
In the crisp sets version, the result of the 
union operation is true if the element is part 
of at least one of the sets. Contrary to  
set intersection, the only possible way to 
have a false truth value is the situation where 
an object is not an element of any of the 
(two) sets:

The union of two sets is called a ‘disjunc-
tion’ and it is usually denoted with the ‘∪’ 
or ‘+’ signs, and the later should not be con-
fused with the arithmetic addition.

The fuzzy version of this operation is 
exactly the opposite of the set intersection, 
by calculating the maximum between two  
(or more) values:

 ∪ =A B max A B( , ) (2)

Table 57.1 Set intersection for crisp sets

A B

0 AND 0 = 0
0 AND 1 = 0
1 AND 0 = 0
1 AND 1 = 1

Table 57.2 Set union for crisp sets

A B

0 OR 0 = 0
0 OR 1 = 1
1 OR 0 = 1
1 OR 1 = 1
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Set Negation

Set negation is a fundamental operation in set 
theory, consisting of finding the complement 
of a set, A, from a universe, U (which is a 
different set of its own, formed by the ele-
ments of U that are not in A). It is many times 
denoted with the ‘∼’ or ‘¬’ signs, and some-
times (especially in programming) with the 
exclamation sign ‘!’.

Negating multivalue crisp sets involves 
taking all elements that are not equal to a 
specific value. It is still a binary crisp opera-
tion, first by coercing the multivalue set into 
a binary crisp one and then by negating the 
resulting values.

Negation is a unary operation, and its 
fuzzy version is a simple subtraction from 1:

 A A~ 1= −  (3)

The importance of set negation will be 
revealed later, especially when comparing the 
quantitative methods with the set theoretical 
ones, to reveal a certain asymmetry that is 
specific to sets, with a methodological effort 
to explain both the presence and the negation 
(its absence) of a certain phenomenon.

FORMULATING HYPOTHESES  
USING SETS

There are multiple ways to conceptualize, 
measure, and hypothesize social and political 
phenomena. Previous chapters from this 
book present several such approaches, from 
the quantitative types centered on variables 
to qualitative methods focused on cases. The 
quantitative approach relies on very precise 
statistical properties stemming from large 
samples, and it describes the net effect of 

each independent variable on the outcome 
(the dependent variable), controlling for all 
other variables in the model. It is a relatively 
straightforward, albeit with specialized sta-
tistical language that is extensively used in 
quantitative research, however, it is not the 
most common language to formulate scien-
tific hypotheses.

Hsieh (1980), Novák (1991), Arfi (2010), 
and even Zadeh (1983) himself have shown 
how the set theory, and especially the fuzzy 
sets, can be related to the natural language. 
Moreover, and contrary to most common 
expectations, scientific hypotheses do not 
usually mention the specific net effects of 
various independent variables, instead they 
seem very compatible with the language of 
sets, much like the natural language.

For instance, hypothesizing that demo-
cratic countries do not go to war with each 
other (Babst, 1964) can be naturally trans-
lated into sets. The elements are countries, 
and there are two sets involved: the set of 
democratic countries, and the set of countries 
that do not go to war with each other. It is the 
type of hypothesis that can be best expressed 
in terms of sufficiency and subset relation, 
but for the moment, it should suffice to state 
that it is a concomitant membership of the 
two sets: those countries that are included 
in the set of democratic countries are also 
included in the set of countries that do not go 
to war with each other.

The same type of language can be applied 
to another common type of hypothesis in an 
if-then statement, for instance: ‘if a student 
passes the final exam, then he or she gradu-
ates’. Here, too, it is about two sets: the set of 
students who pass the final exam, and the set 
of students who graduate, membership in the 
first guarantees membership in the second.

It seems natural to specify such hypoth-
eses in terms of set language, both in fuzzy 
sets form (more or less democratic countries) 
and even binary crisp form (either graduate, 
or not). Scientific thinking, at least in the 
social and political sciences, is a constant 
interplay between abstractization and exact 

Table 57.3 Set negation for crisp sets

A

NOT 0 = 1
NOT 1 = 0
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measurement: we first start by specifying 
the (pre)conditions that make a certain out-
come possible, and only then do we measure 
the exact values for each such condition or 
variable.

A statement such as: ‘welfare is education 
and health’ does not mention any specific 
values of the education, or of the health, that 
produce the welfare. This is but one among 
many possible causal recipes (in the vein of 
the welfare typologies contributed by Esping-
Andersen, 1990) where only the ingredients 
(education and health) are mentioned with-
out specifying the exact net effects that are 
needed to produce welfare. It is entirely pos-
sible to assign precise mathematical num-
bers to sets (more exactly, to set membership 
scores), which is the topic of the next section, 
but formulating hypotheses is more a matter 
of specifying abstract concepts (similar to 
sets) and less about exact values for each.

Using a different perspective on the rela-
tion between fuzzy sets and natural language, 
George Lakoff rejects the notion that natural 
language can be perfectly mapped over the 
set theory (Ramzipoor, 2014). He also criti-
cizes Charles Ragin’s approach that assigns 
membership scores (presented in the next 
section about set calibration), based on his 
expertise combining linguistics and cognitive 
science. More recently, Mendel and Korjani 
(2018) propose a new method using the 
Type-2 fuzzy sets.

The whole debate is extremely interesting, 
for social science concepts have a dual nature 
stemming from both linguistics and theoreti-
cal corpus, but it is by now evident that set 
theory is well established in social and politi-
cal research. Conceptual thinking has a long 
tradition in sociology, with Max Weber’s 
ideal types being similar to set theoretic con-
cepts that play a central role in comparative 
analysis. In fact, the whole process of concept 
formation is embedded with the language of 
set theory (Mahoney, 1980; Goertz, 2006b; 
Schneider and Wagemann, 2012).

Despite the predominance of the quan-
titative methods in the social and political 

sciences, there are situations where statistical 
analyses are impossible (mainly due to a very 
small number of cases) and, most impor-
tantly, where the use of set theory is actually 
more appropriate, for both formulating and 
testing theories.

SET CALIBRATION

In the natural sciences, assigning member-
ship scores to sets is a straightforward proce-
dure. Objects have physical properties that 
can be measured and transformed into such 
membership scores. In the social and politi-
cal sciences, the situation is much more 
complex. These sciences deal with highly 
complex phenomena that can only be con-
ceptualized at a very abstract level. They do 
not exist in the physical reality and do not 
have visible properties to measure directly.

Concepts are very abstract things, and 
their measurement is even more complex: it 
depends on theory, which determines their 
definition which, in turn, has a direct effect 
over their operationalization which has 
an influence on constructing the research 
 instrument – only then can some measure-
ments be collected.

Each of these stages require highly special-
ized training involving years (sometimes a life-
time) of practice before mastering the activity. 
Theoreticians are rare, or at least those who 
have a real impact over the research praxis of 
the entire academic community. Most research-
ers follow a handful of theories that attempt to 
explain the social and political reality. Each 
such theory should be ideally reflected into a 
clear definition of the abstract concept.

Based on the definition, the process of 
operationalization is yet another very complex 
step towards obtaining some kind of numeri-
cal measurements about the concept. It is 
based on the idea that, given the impossibility 
of directly measuring the concept, researchers 
can only resort to measuring its effect over the 
observable reality. For instance, we cannot tell 
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how altruistic a person is unless we observe 
how the person behaves in certain situations 
related to altruism. There are multiple ways 
for a person to manifest this abstract concept, 
and the operationalization is a process that 
transforms a definition into measurable indi-
cators, usually via some other abstract dimen-
sions and subdimensions of the concept.

Finally, obtaining numerical scores based 
on the indicators from the operationaliza-
tion phase is yet another complex activity. 
There are multiple ways to measure (count-
ing only the traditional four levels of meas-
urement: nominal, ordinal, interval, and ratio, 
but there are many others), and the process of 
constructing the research instrument, based 
on the chosen level of measurement for each 
indicator, is an art. It is especially complex 
as the concepts should also be equivalent in 
different cultures, and huge efforts are being 
spent to ensure the compatibility between the 
research instruments from different languages 
(translation being a very sensitive activity).

The entire process ends up with some 
numerical measurements for each indicator, 
and a final task to aggregate all these numbers 
to a single composite measure that should be 
large if the concept is strong, and small if 
the concept is weak. In the above example, 
highly altruistic people should be allocated 
large numbers, while unconcerned people 
should be allocated low numbers, both on a 
certain numerical scale.

In set theory, calibration is the process of 
transforming these (raw) numbers into set 
membership scores, such that a completely 
altruistic person should receive a value of 1, 
while a non-altruistic person should receive a 
value of 0. This process is far from straight-
forward, even for the natural sciences.

Describing the procedure, Ragin (2008) 
makes a distinction between ‘calibration’ and 
‘measurement’ processes and exemplifies 
with temperature as it is a directly measur-
able physical property. While exact tempera-
tures can be obtained from absolute zero to 
millions of degrees, no such procedure would 

even be able to automatically determine what 
is ‘hot’ and what is ‘cold’. These are human 
interpreted concepts and need to be associ-
ated with some subjective numerical anchors 
(thresholds). On the Celsius scale, 0 degrees 
is usually associated with cold, while 100 
degrees is usually associated with very hot, 
and these numbers are not picked at random. 
They correspond to the points where the 
water changes states: to ice at 0 degrees and 
to steam at 100 degrees, when the water boils.

The choice of thresholds is very important, 
for it determines the point where something 
is completely out of a set (for instance at 0 
degrees, the ice is completely out of the set 
of hot matter) and the point where something 
is completely inside the set (at 100 degrees, 
steam is completely inside the set of hot mat-
ter). A third threshold is also employed called 
the ‘crossover’: the point of maximum ambi-
guity where it is impossible to determine 
whether something is more in than out of a 
set, corresponding to the set membership 
score of 0.5.

The set of thresholds (exclusion, crosso-
ver, and inclusion) is not universal, even 
for the same concept. A ‘tall’ person means 
one thing in countries like Norway and 
Netherlands, where the average male height 
is more than 1.8 m, and another thing in 
countries like Indonesia and Bolivia, where 
the average is about 1.6 m. It is the concept 
that matters – not its exact measurement – 
therefore, different thresholds need to be 
used in different cultural contexts, depending 
on the local perception.

Traditionally, there are two types of cali-
brations for each type of sets, crisp and fuzzy. 
Calibrating to crisp sets is essentially a mat-
ter of recoding the raw data and establishing 
a certain number of thresholds for each value 
of the calibrated set. When binary crisp sets 
are intended to be obtained, a single thresh-
old is needed to divide the raw values in two 
categories: those below the threshold will be 
allocated a value of 0 (out of the set) and for 
those above the threshold, a value of 1 (in the 
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set). When multivalue crisp sets are intended, 
there will be two thresholds to divide into 
three categories, and so on. The general for-
mula for the number of thresholds is the num-
ber of values minus 1.

Even for this (crude) type of recoding, 
the values of the thresholds should not be 
mechanically determined. A statistician will 
likely divide the values using the median, 
which would, in many cases, be a mistake. It 
is not the number of cases that should deter-
mine the value of the threshold, but rather the 
meaning of the concept and the expert’s inti-
mate knowledge about which cases belong to 
which category.

For instance, there will be a certain value 
of the threshold to divide countries’ GDP in 
the set of ‘developed countries’ and a differ-
ent value of the threshold for the set of ‘very 
developed countries’. The exact value should 
be determined only after an inspection of the 
distribution of GDP values, especially if they 
are not clearly clustered. In such a situation, the 
researcher’s experience should act as a guide 
in establishing the best threshold value that 
would correctly separate different countries 
in different categories, even if the difference 
is small. The whole of this process should be 
thoroughly described in a dedicated methodo-
logical section, with strong theoretical justifi-
cations for the chosen value of the threshold.

Calibrating to fuzzy sets is more challeng-
ing and, at the same time, more interesting 
because there are multiple ways to obtain 
fuzzy membership scores from the same 
raw numerical data. The most widely used is 
called the ‘direct method’, first described by 
Ragin (2000). It uses the logistical function to 
allocate membership scores, using the exclu-
sion, cross-over, and inclusion thresholds.

Table 57.4 below displays the two relevant 
columns extracted from Ragin’s book, the 
first showing the national income in US dol-
lars and the second showing the degree of 
membership (the calibrated counterparts of 
the national income) into the set of developed 
countries.

At the top of the list, Switzerland and the 
United States are highly developed countries, 
which explains their full membership score of 
1, while Senegal and Burundi, with national 
incomes of 450 USD and 110 USD respec-
tively, are too poor to have any membership 
whatsoever in the set of developed countries.

What threshold values best describe this 
set, and how are the membership values cal-
culated? A quick quantitative solution would 
be to calculate the ratio of every other coun-
try from the income of Switzerland, the rich-
est country in that data.

Aside from the fact such a method is 
mechanical and data driven, it would imme-
diately become obvious that, for instance, the 
Netherlands (which currently has an almost 
full inclusion of 0.98 in the set of developed 

Table 57.4 Per capita income (INC), calibrated 
to fuzzy sets membership scores (fsMS)

INC fsMS

Switzerland 40,110 1.00
United States 34,400 1.00
Netherlands 25,200 0.98
Finland 24,920 0.98
Australia 20,060 0.95
Israel 17,090 0.92
Spain 15,320 0.89
New Zealand 13,680 0.85
Cyprus 11,720 0.79
Greece 11,290 0.78
Portugal 10,940 0.77
Korea, Rep. 9,800 0.72
Argentina 7,470 0.62
Hungary 4,670 0.40
Venezuela 4,100 0.25
Estonia 4,070 0.25
Panama 3,740 0.18
Mauritius 3,690 0.17
Brazil 3,590 0.16
Turkey 2,980 0.08
Bolivia 1,000 0.01
Cote d’Ivoire 650 0.01
Senegal 450 0.00
Burundi 110 0.00
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countries) would have a ratio equal to 0.628, 
which does not seem to accurately reflect 
our knowledge. Likewise, a median value of 
8,635 USD would leave Argentina more out 
of the set than more in, and the average of 
11,294 USD is even more misleading, leav-
ing Greece more out than in.

Ragin started by first deciding the crosso-
ver threshold at a value of 5,000 USD, which 
is the point of maximum ambiguity about a 
country being in more in than more out of the 
set of developed countries. He then applied 
some mathematical calculations based on the 
logistic function and the associated log odds, 
arriving at a full inclusion score of 20,000 
USD (corresponding to a membership score 
of at least 0.95 and a log odds of membership 
of at least +3) and a full exclusion score of 
2,500 USD (corresponding to a membership 
score of at most 0.05 and a log odds of mem-
bership lower than −3).

Employing the logistic function, the gener-
ated set membership scores follow the familiar 
increasing S shape displayed in Figure 57.1, 
but this function is only one among many 
other possible ones to perform calibration. 
Linear mathematical transformations are also 
possible, such as the one from the Equation (4), 
as extracted from Duúa (2019: 84):
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where: 

Ě� e is the threshold for full exclusion 
Ě� c is the crossover 
Ě� i is the threshold for full inclusion 
Ě� x is the raw value to be calibrated 
Ě� b determines the shape below the crossover 

(linear when b = 1 and curved when b > 1) 
Ě� a determines the shape above the crossover 

(linear when a = 1 and curved when a > 1)

The calibration functions in Figure 57.2 
refer to the calibration of 100 randomly 
selected heights ranging from 150 cm to 200 
cm. These values are calibrated in the set of 
‘tall people’ (the linear increasing function that 
could act as a replacement for the logistical S 
shape) as well as in the set of ‘average height 
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Figure 57.2 Other possible calibration 
functions
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Figure 57.1 Calibration in the set of devel-
oped countries
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people’ (with a triangular shape, and also with 
a trapezoidal shape). This is an example that 
shows how the calibrated values depend on the 
conceptual meaning of the calibrated set. All 
shapes refer to people’s heights and all use the 
exact same raw values, but the meaning is dif-
ferent for ‘average height’ and for ‘tall’ people.

The set of three threshold values (155 cm 
for full exclusion, 175 cm for the crossover, 
and 195 cm for full inclusion) can be used 
only for the increasing linear that approxi-
mates an S shape for the set of ‘tall’ people. 
The other linear functions that approximate 
a bell shape (for the set of ‘average height’ 
people) are more challenging, and need a set 
of six values for the thresholds (three for the 
first part that increases towards the middle, 
and the other three for the second part that 
decreases from the middle towards the higher 
heights). There are two full exclusion thresh-
olds, two crossover values, and, finally, two 
full inclusion thresholds (that coincide for the 
triangular shape), with the calibrated values 
being obtained via the mathematical transfor-
mations from Equation (5):
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Apart from the direct method, Ragin also 
presented an ‘indirect’ one in order to obtain 
fuzzy membership scores from interval level 
raw data. In this method, no qualitative 
anchors (thresholds) need to be specified in 
advance, but, rather, it involves creating an 

artificial dependent variable where each case 
is allocated a certain fuzzy membership cat-
egory from 0 to 1 (usually six, an even 
number to avoid the point of maximum ambi-
guity 0.5), then performs a (quasi)binomial 
logistic regression using a fractional polyno-
mial equation with the raw values as an inde-
pendent variable against the newly formed 
dependent variable containing the fuzzy 
membership categories (for more details, see 
Duúa, 2019: 92).

A different type of calibration is applied 
for categorical causal conditions (for instance, 
containing values from a response Likert type 
scale). It is not possible to determine any thresh-
olds because the variation is extremely small and 
data can sometimes be severely skewed, which 
limits the variation even more. For the same  
reasons, no regression equation can be applied 
with the indirect method, since it assumes at 
least the independent variable to be metric.

A possible solution to this problem is 
to manually allocate fuzzy membership 
scores for each category (the so-called 
‘direct assignment’ method), introduced by 
Verkuilen (2005) who also criticized it for 
containing bias due to researcher’s subjec-
tivity. Verkuilen mentions a possibly better 
solution, by employing the Totally Fuzzy and 
Relative (TFR) method (Cheli and Lemmi, 
1995), making use of the empirical cumula-
tive distribution function of the observed data 
E, then calculating the fraction between the 
distance from each CDF value E(x) to the 
CDF of the first value from the Likert scale 
E(1), and the distance from 1 (the maximum 
possible fuzzy score) to the same E(1):

 = −
−







TFR max
E x E

E
0,

( ) (1)
1 (1)

 (6)

Calibration is a very important topic in set 
theoretical methods, as many of the subse-
quent results depend on this operation. It 
should not be a mechanical process, but 
rather an informed activity where the 
researcher should present the methodological 
reasons that led to one method or another.
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SET MEMBERSHIP SCORES VS. 
PROBABILITIES

Despite this topic being discussed numerous 
times before (Dubois and Prade, 1989; 
Kosko, 1990; Zadeh, 1995; Ragin, 2008; 
Schneider and Wagemann, 2012), and despite 
attempts to combine set theory and statistics 
(Heylen and Nachtegael, 2013), set member-
ship scores and probabilities can still be 
confused as both range from 0 to 1 and, at a 
first glance, seem very similar.

Before delving into the formal difference, 
consider the following example involving a 
potentially hot stove. If the stove has a 1% 
probability of being very hot, there is still a 
small (but real) chance to get severely burned 
when touching it. However, if we say the 
stove has a 1% inclusion in the set of hot 
objects, the stove can be safely touched with-
out any risk of getting burned.

Ragin’s example with the glass of water 
has the same interpretation. If there is a 1% 
probability the glass will contain a deadly 
poison, there is a small but definite chance 
of dying after drinking that water. But if the 
glass has a 1% inclusion in the set of poi-
sonous drinks, there is absolutely no risk 
of dying.

Intuitive as they may seem, these two 
examples still don’t explain the fundamental 
difference. At the formal level, the probabil-
ity has to obey the Kolmogorov axioms:

Ě� the probability of an event that is certain is equal 
to 1: P(C) = 1

Ě� the probability of an impossible event is equal to 
0: P (∅) = 0

Ě� if two events do not overlap (A ∩ B = ∅), then 
P(A + B) = P(A) + P(B)

The probability can essentially be interpreted 
as a relative frequency obtained from an infi-
nite repetition of an experiment. It is a fre-
quentist statistic (based on what is called a 
frequentist approach), where the conclusions 
are drawn from the relative proportions in the 
data.

However, frequencies can only be com-
puted for categorical variables, in this situa-
tion: for events either happening or not. To 
calculate probabilities (relative frequencies) 
there are only two possible values for the 
event: 1 (true, happening) or 0 (false, not hap-
pening). The first section already presented 
the different types of sets, and this corre-
sponds to the definition of a binary crisp set.

Therefore, the meaning of probability is 
necessarily related to crisp sets, while mem-
bership scores are related to fuzzy sets. They 
simply refer to different things, given that 
crisp sets are only particular cases of fuzzy 
sets. Set membership scores refer to vari-
ous degrees of membership to a set, they are 
related to the uncertainty about set member-
ship that cannot be computed the same as a 
probability because the set itself is not crisp, 
but fuzzy.

When flipping a coin, there are only two 
possible outcomes (heads or tails) and an 
exact probability of occurrence for each can 
be computed by flipping the coin numerous 
times. These are clear-cut categories (either 
heads or tails), but not all concepts are so 
clear. Whether a person is ‘young’ is a mat-
ter of uncertainty, and every person can be 
included (more, or less) in the set of young 
people. Same with ‘smart’, ‘healthy’, etc., all 
of which cannot be determined unequivocally.

There are situations where probabilities 
and fuzzy sets can be combined (Singpurwalla 
and Booker, 2004; Demey et al., 2017), espe-
cially with Bayesian probabilities (Mahoney, 
2016; Barrenechea and Mahoney, 2017; 
Fairfield and Charman, 2017) in conjunction 
with process tracing, but these two concepts 
do not completely overlap. In the words of 
Zadeh (1995) himself, they are ‘complemen-
tary rather than competitive’.

POLARITY AND ASYMMETRY

There is an even deeper layer of understand-
ing that needs to be uncovered with respect to 
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probabilities and fuzzy sets. Describing 
probability, Kosko (1994: 32) shows that it 
works with bivalent sets only (an event either 
happens or it does not happen), and another 
important difference refers to how a set 
relates to its negation.

In probability theory, A ∩ ∼A = ∅, and  
A ∪ ∼A = 1. For fuzzy sets, it turns out that  
A ∩ ∼A ≠ ∅, and A ∪ ∼A ≠ 1. These inequali-
ties (especially the first one) essentially entail 
that objects can be part of both a set and its 
negation, and the union of the two sets might 
not always be equal to the universe.

This has deep implications over how we 
relate to events, their negation, and the com-
mon misperception of bipolarity. Sets are 
unipolar, therefore a bipolar measurement 
scale (for instance, a Likert type response 
scale) cannot be easily accommodated with 
a single set.

In a bipolar space, ‘good’ is the opposite 
of ‘bad’; but a ‘not bad’ thing is not precisely 
the same as a ‘good’ thing: it is just not bad. 
Same with ‘ugly’ vs. ‘beautiful’: if a thing is 
not ugly, that does not mean it is necessar-
ily beautiful, or, the other way around, some-
thing that is not beautiful is not necessarily 
ugly. Bauer et al. (2014) encountered similar 
difficulties in evaluating a bipolar scale with 
left-right political attitudes, analyzing the 
vagueness of the social science concepts in 
applied survey research.

Things, or people, can have membership 
scores of more than 0.5 in both a set and its 
negation. A person can be both happy and 
unhappy at the same time, therefore translat-
ing a bipolar scale into a single set is diffi-
cult, if not impossible. There should be two 
sets, first for the happy persons and the sec-
ond for the unhappy ones, and a person can 
be allocated membership scores in both, such 
that the sum of the two scores can exceed 1 
(something impossible with probabilities).

The set negation leads to another point 
of misunderstanding between quantitative 
statistics (especially the correlation-based 
techniques, for instance the regression anal-
ysis) and set theoretic methods. Numerous 

articles have been written comparing empiri-
cal results (Katz et  al., 2005; Grendstad, 
2007; Fujita, 2009; Grofman and Schneider, 
2009; Woodside, 2014), pointing to the defi-
ciencies of regression techniques (Pennings, 
2003; Marx and Soares, 2015), criticizing 
fuzzy sets (Seawright, 2005; Paine, 2015; 
Munck, 2016), and revealing the advantages 
of fuzzy sets (Cooper and Glaesser, 2010), 
or, more recently, focusing on the integration 
and complementarity between the two meth-
ods (Skaaning, 2007; Mahoney, 2010; Fiss 
et al., 2013; Radaelli and Wagemann, 2019).

The sheer amount of written publications 
suggest at least a couple of things. First, that 
set theoretic methods are increasingly used in 
a field traditionally dominated by the quan-
titative analysis, and second, there is a lot of 
potential for these methods to be confused 
(despite the obvious differences) as they both 
refer to explanatory causal models for a given 
phenomenon.

Correlation-based techniques assume an 
ideal linear relation between the independent 
and dependent variables. When high values 
of the dependent variable (that can be inter-
preted as the ‘presence’ of the outcome, in 
set theory) are explained by high values of 
the independent variable(s), then low values 
of the dependent (‘absence’ of the outcome) 
are necessarily explained by low values of the 
independent variable(s).

By contrast, set theoretical methods do not 
assume this kind of linearity. While the pres-
ence of the outcome can be explained by a 
certain configuration of causal conditions, the 
absence of the outcome can have a very dif-
ferent explanation, involving different causal 
combinations. If welfare can be explained by 
the combination of education and health, it is 
perfectly possible for the absence of welfare 
to be explained by different causes.

While the correlation-based analyses are 
symmetric with respect to the dependent 
variable, the set theoretic methods are char-
acterized by an asymmetric relation between 
a set of causes and a certain outcome. This 
is a fundamental ontological difference that 
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separates the two analysis systems, which 
should explain both why they are sometimes 
confused, as well as why their results are 
seemingly different.

NECESSITY AND SUFFICIENCY

Natural language abounds with expressions 
containing the words ‘necessary’ and ‘suffi-
cient’. In trying to identify the most relevant 
conditions that are associated with an outcome, 
theorists often ask: what are the necessary con-
ditions for the outcome? (without which the 
outcome cannot happen), or what conditions 
are sufficient to trigger an event? (that, when 
present, the event is guaranteed to happen).

The contrast between the correlational per-
spective and the set theoretic methods can be 
further revealed by analyzing Figure 57.3. The 
crosstable on the left side is a typical, minimal 
representation of the quantitative statistical 
perspective, focused on the perfect corre-
lation from the main diagonal. Everything 
off the main diagonal is problematic and 
decreases the coefficient of correlation.

The crosstable on the right side, however, 
tells a different story. In the language of sta-
tistics, the 45 cases in the upper left quad-
rant potentially ruin the correlation, but they 
make perfect sense from a set theoretical 
point of view: since there are no cases in the 
lower right quadrant, this crosstable tells the 
story of X being a perfect subset of Y. The 
‘problematic’ upper left quadrant simply says 
there are cases where Y is present and X is 

absent – in other words, X does not cover 
(does not ‘explain’) all of Y.

The zero cases in the lower right quadrant – 
combined with the 14 cases in the upper right 
quadrant – say there is no instance of X where 
Y is absent, which means that X is completely 
included in Y (it is a subset of Y). Whenever X 
happens, Y happens as well, that is to say X is 
‘sufficient’ for Y (‘if X, then Y’).

This is a different type of language, a set 
theoretical one, that is foreign to the traditional 
quantitative analysis. Regression analysis and 
the sufficiency analysis have the very same 
purpose, to seek the relevant causal condi-
tions for a given phenomenon. However, when 
inspecting for sufficiency, the focus is not the 
main diagonal (correlation style) but rather on 
the right side of the crosstable where X hap-
pens (where X is equal to 1).

This is naturally a very simplified exam-
ple using just two values for both X and Y. 
Quantitative researchers would be right to 
argue that, when the dependent variable is 
binary, a logistic regression model is more 
appropriate than a linear regression model. 
However, set theoretical data need not neces-
sarily be crisp, they can also be fuzzy with a 
larger variation between 0 and 1 – a cross-
table is not enough to represent the data.

At a closer inspection on Figure 57.4, the 
situation is identical for fuzzy sets. The left 
plot displays the characteristic ellipse shape 
of the cloud, with a very positive correlation 
between the independent and the dependent 
variables. It does not really matter whether 
the points are located above or below the 
diagonal, as long as they are close.

The cloud of points from the right plot would 
be considered problematic. Not only are the 
points located far from the main diagonal (ide-
ally, the regression line), but they also display 
inconstant variance (a phenomenon called 
heteroskedasticity). However, this is not prob-
lematic for set theory: as long as the points are 
located above the main diagonal (values of X 
are always smaller than corresponding values 
of Y), it is a perfect representation of a fuzzy 
subset relation. In set theoretical language, 

Figure 57.3 Correlation (left) and subset 
sufficiency (right)
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such a subset relation, it is also described as 
perfectly ‘consistent’.

Not all subset relations are that perfect. In 
fact, there can be situations where X can hap-
pen and Y is absent, without affecting the suf-
ficiency relation (too much). Just as there are 
no countries with perfect democracies (they 
are ‘more or less’ democratic), situations 
with perfect sufficiency are also extremely 
rare. When perfect sufficiency happens, it is 
mainly the result of our calibration choice: 
it can happen in crisp sets, but this is almost 
never observed with fuzzy sets.

The concept of fuzziness teaches us that 
conditions can be ‘more or less’ sufficient, just 
as two sets can be more or less included one 
into the other. The causal set should be ‘con-
sistent enough’ with (or ‘included enough’ in) 
the outcome set, to be accepted as sufficient

The big question is how much of outcome 
set Y is explained by causal set X, a very com-
mon question in traditional statistics that is 
usually answered with the R2 coefficient in the 
regression analysis. In set theory, this is a mat-
ter of coverage. There can be situations with 
imperfect consistency but large coverage, and 
perfect consistency but low coverage.

Out of the two situations in Figure 57.5, the 
relation from the left plot is the most relevant. 
Despite the imperfect consistency (inclusion), 

the causal condition X covers a lot of the cases 
in the outcome Y, qualifying as a highly relevant 
(albeit imperfect) sufficient condition for Y.

In the plot from the right side, X is perfectly 
consistent with Y but it covers only a very 
small area, which means there are very many 
cases in Y that are not explained by X, sug-
gesting we should search for more causal con-
ditions that explain the entire diversity of the 
outcome’s presence. In such situations, X is 
called sufficient but not necessary, an expres-
sion which is also described by the concept 
of ‘equifinality’: the very same outcome can 
be produced via multiple causal paths, just as 
there are many roads that lead to the same city.

Inclusion and coverage can be precisely 
measured, with the same formula being valid 
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Figure 57.4 Fuzzy correlation (left) and fuzzy subset sufficiency (right)
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Figure 57.5 Incomplete inclusion/large 
coverage (left) and complete inclusion/low 
coverage (right)
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for both crisp and fuzzy sets. Equation (7) 
calculates the consistency for sufficiency 
(inclS), while Equation (8) calculates the 
coverage for sufficiency (covS), where the 
sufficiency relation is denoted by the forward 
arrow sign X ⇒ Y:

 ∑
∑=⇒inclS

min(X, Y)

XX Y

 (7)

 ∑
∑=⇒covS

min(X, Y)

YX Y

 (8)

In the regression analysis, independent varia-
bles may be collinear, meaning they explain the 
same part of the dependent variable’s variation. 
This is usually detected with the contribution of 
each independent variable to the model’s R2 
coefficient: only those variables that contribute 
a significant increase of the R2 are preferred.

Similarly, in set theory, the causal condi-
tions have a so called ‘raw’ coverage and also 
a ‘unique’ coverage. Their unique coverage 
(covU) is the area from the outcome Y which 
is solely covered by a certain causal condition, 
as shown in Equation (9) and Figure 57.6.

 

covU
min

min max

(Y, A)

Y

(Y, A, (B,C, ...))

Y

A Y

∑
∑
∑

∑

=

−

⇒

(9)

In Figure 57.6, the unique coverage of condi-
tion A can be computed as the area of Y cov-
ered by A, minus the intersection of A and B 
(its area jointly covered by condition B). More 
generally, minus the intersection between A 
and the union of all other causal conditions 
that cover the same area of Y covered by A.

Necessity and sufficiency are mirrored 
concepts. While sufficiency is about the sub-
set relation of the causal condition within 
the outcome set, necessity is the other way 
around: the superset relation of the causal 
condition over the outcome set. A causal 

condition is necessary iff it is a superset of 
the outcome: when Y happens, X is always 
present. When the outcome Y does not 
occur in the absence of X, it means that X is 
necessary.

The upper left quadrant in a 2 × 2 crossta-
ble should be empty (where Y = 1 and X = 0),  
and, correspondingly, the area above the 
main diagonal in a fuzzy XY plot should also 
be empty in order to determine necessity.

Mirrored scores for the consistency of neces-
sity (inclN, how much of Y is included in X), 
as well as for the coverage of necessity (covN, 
how much of X is covered by Y) can be calcu-
lated, as shown in Equations (10) and (11):

 ∑
∑=⇐inclN

min(X, Y)

YX Y

 (10)

 ∑
∑=⇐covN

min(X, Y)

XX Y

 (11)

When analyzing necessity, the most impor-
tant thing is to determine how relevant a 
necessary condition is. Oxygen is a neces-
sary condition for a fire, but it is an irrelevant 
necessary condition as oxygen can be found 
everywhere, and in most situations where 
oxygen is present, a fire is not observed. A 
more important necessary condition would 
be heat, and another necessary condition may 
be a spark. Both of these are truly necessary 
(hence relevant) to start a fire.

The relevance of a necessary condition is 
revealed by the coverage score. If the out-
come Y covers only a very small area of the 

Y

A B

Figure 57.6 Unique coverage of A (hashed 
area)
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causal condition, it is a sign that X might be 
irrelevant.

Goertz (2006a) is a leading scholar in the 
analysis of necessity, further differentiating 
between irrelevant and trivial necessary condi-
tions. Irrelevance and triviality are somewhat 
similar, and they are frequently used as syno-
nyms, but there is a subtle difference between 
them. Triviality is a maximum of irrelevance, 
to the point that not only the subset outcome Y 
covers a very small area of the causal condi-
tion X, but the superset condition X becomes 
so large that it fills the entire universe. When 
trivial, the causal condition is omnipresent, 
with no empirical evidence of its absence.

In the previous example, oxygen is an 
irrelevant, but not exactly a trivial, necessary 
condition for a fire, as there are many (in fact, 
most) places in the Universe where oxygen 
is absent. In the Euler/Venn diagram from 
Figure 56.7, Y is completely consistent with 
X but it covers a very small area. Moreover, 
it can be noticed that X occupies the entire 
universe represented by the rectangle: it is an 
omnipresent necessary condition.

The same line of reasoning can be applied on 
the XY plot from the right side, where the focus 
on necessity is the area below the main diago-
nal, and X is trivial since all of its points are 

located on the extreme right where X is always 
equal to 1, and most of the points are located 
in the lower half of the plot where Y is more 
or less absent (below the crossover 0.5 point).

A condition becomes less and less trivial 
(hence more and more relevant) when the 
points move away from the extreme right, 
where X is always equal to 1, towards the 
main diagonal. Goertz proposed a measure 
of triviality by simply measuring the dis-
tance between the fuzzy values and 1. Later, 
Schneider and Wagemann (2012) advanced 
Goertz’s work and proposed a measure called 
Relevance of Necessity (RoN), that is the 
current standard to complement the coverage 
score for necessity:

 ∑
∑=

−
−

RoN
min

(1 X)

(1 (X,Y))
 (12)

The XY plots and Venn/Euler diagrams have 
a couple of more interesting properties to 
discuss. If points are located all over the plot, 
there is no clear relationship between the 
cause and the outcome. We expect the points 
to be positioned either above the main diago-
nal (for sufficiency) or below (for necessity). 
If that happens, it means that if a cause is 
perfectly sufficient, it is usually not necessary 
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Figure 57.7 X as a trivial necessary condition for Y
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and, conversely, if it is perfectly necessary, it 
is usually not sufficient.

Ideally, we would like to find a causal condi-
tion that is both necessary and sufficient for an 
outcome, thus having the greatest explanatory 
power. At a first sight, that would seem impos-
sible since a causal set X cannot be a subset and 
a superset of the outcome Y at the same time. It 
may in fact happen when the two sets coincide: 
the subset X covers 100% of the set Y.

In terms of XY plots, the points are located 
neither above nor below the main diagonal. 
When the two sets coincide, the points are 
located exactly along the main diagonal, 
which would also correspond to a (close to) 
perfect correlation in the statistical tradition, 
similar to the left plot from Figure 57.4.

However, such a perfect correlation is dif-
ficult to obtain in practice, and it would usually 
mean we are not dealing with two different 
concepts (for the cause and for the effect) but 
with one and the same concept under two dif-
ferent measurements. No causal set is perfectly 
correlated with the outcome, and, perhaps 
more importantly, a single causal set is neither 
necessary nor sufficient by itself. It is very rare 
to obtain an explanatory model with a single 
causal condition, a typical outcome being pro-
duced by various combinations of causes.

Causal factors combine in conjunction, 
which in set theory is set intersections. Where 
a single cause might not be (sufficiently) 
included into an outcome set, an intersec-
tion with other condition(s) might be small 
enough to fit.

The same thing happens for necessity, but 
in reverse. If a single causal condition is not 
big enough to qualify as a necessary superset 
of the outcome, disjunctions (set unions) of 
two or more causal conditions might eventu-
ally form a big enough superset to cover the 
outcome. However, if conjunctions are easy 
to interpret (the simultaneous presence of two 
causal sets), disjunctions need to have theoreti-
cally valid interpretations, much like the quan-
titative researchers having to find a meaningful 
interpretation for the latent constructs resulted 
from the principal component analysis.

More recent and interesting develop-
ments in the analysis of necessity include 
the Necessary Condition Analysis (NCA) by 
Dul (2016), while on sufficiency, Schneider 
and Rohlfing (2016) bring important insights 
in the cutting edge, so called Set Theoretic 
Multi-Method Research (STMMR) which 
is an entire topic on its own and deserves a 
separate and more extended presentation.

SET THEORY AND THE QUALITATIVE 
COMPARATIVE ANALYSIS

Having presented the background of set 
theory, the stage is set to introduce a (third) 
way to tackle research problems traditionally 
approached through the qualitative and quan-
titative methods.

The trouble with quantitative research is 
that it needs many cases (a large N) to make 
the Central Limit Theorem work, and a typi-
cal political science research compares only 
a handful of countries or events and does not 
have that many cases. There are only 28 coun-
tries in the EU, and a comparative study on the 
eastern European countries will have even less 
cases. When studying very rare events such 
as revolutions, Skocpol (1979) had only three 
cases to work upon: France, Russia, and China.

It is difficult to argue that there is an 
underlying, potentially infinite population of 
‘possible’ such events to draw large samples 
from, in order to justify the use of the quanti-
tative analysis, even with Monte Carlo simu-
lations for small samples. On the other side, 
the qualitative analysis is very much case ori-
ented and produces perfect explanations for 
all individual cases. This is often useful for 
theory formation, but it is usually regarded as 
too specific to have generalizable value.

With both sides having strong arguments to 
defend one method or another in different situ-
ations, Ragin (1987) employed set theory and 
Boolean algebra to import a methodology cre-
ated for electrical engineering (Quine, 1955; 
McCluskey, 1956) into the social and political 
sciences. He showed how, through a systematic 
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comparative analysis of all possible pairs of 
cases, the relevant causal factors can be identi-
fied and the irrelevant ones eliminated. More 
importantly, he showed how to identify the pat-
terns, or the combinations of causal conditions, 
that are sufficient to produce an outcome.

The essence of the entire procedure can 
be reduced to a process called Boolean mini-
mization, which was itself imported into the 
electrical engineering from the canons of log-
ical induction formulated by J.S. Mill (1843).

The two expressions in Table 57.5 are equiv-
alent to AB + A∼B, which can be simplified to 
A alone since the condition B is redundant, 
present in the first, and absent in the second: 
A(B + ∼B) = A. In such an example, B is said 
to be ‘minimized’ (or eliminated), hence the 
name of the Boolean minimization procedure.

Each case that is added to the analysis dis-
plays a certain combination (of presence or 
absence) of causal conditions, and the algo-
rithm exhaustively compares all possible 
pairs cases to first identify if they differ by 
only one literal, then iteratively and progres-
sively minimize until nothing else can be 
further simplified. The final product of this 
procedure is the set of so-called ‘prime impli-
cants’, which are simpler (more parsimoni-
ous) but equivalent expressions to the initial, 
empirically observed cases.

Since pairs of cases are compared, the 
process is more qualitative than quantita-
tive, therefore the ‘Q’ in QCA stands for the 
‘Qualitative’ Comparative Analysis. It has 
absolutely nothing to do with traditional sta-
tistics, yet it employs a systematical and solid 
mathematical algorithm such as the Boolean 
minimization to identify the minimal con-
figurations of (relevant) causal conditions 
which are sufficient to produce an outcome.

Crisp sets are very attractive as they allow 
one to map the empirically observed configu-
rations over a finite number of combinations 
of presence/absence for the causal conditions 
(equal to ∏lc, where l is the number of levels for 
each causal condition c = 1 … n). This finite 
space is called a truth table, and it contains all 
positive and negative observed configurations, 
as well as those for which there is no empirical 
information (called ‘remainders’).

However, it is precisely the ‘Boolean’ 
nature of the algorithm that attracted a lot 
of criticism (Goldstone, 1997; Goldthorpe, 
1997), since it suggests a very determinis-
tic view of reality (Lieberson, 1991) and, as 
pointed many times before, most social phe-
nomena are not simply present or absent, but 
somewhere in between.

The debate led to an upgrade of QCA from 
Boolean to fuzzy sets (Ragin, 2000, 2008). 
Instead of crisp values, each case has a mem-
bership score for each of the causal condition 
sets. The challenge, that was also solved by 
Ragin (2004), was to translate fuzzy mem-
bership scores to truth table crisp scores, 
because the minimization process is Boolean.

In the fuzzy version, the truth table config-
urations act as the corners of a multidimen-
sional vector space where the set membership 
scores play the role of fuzzy coordinates for 
the position of each case. Figure 57.8 pre-
sents the simplest possible vector space with 
two dimensions, and a case having two fuzzy 
membership scores of 0.85 on the horizon-
tal and 0.18 on the vertical. For only two 

Table 57.5 Boolean minimization example

A B Y

1 1 1
1 0 1
1 - 1

Figure 57.8 Bidimensional vector space 
(left) and the corresponding truth table 
(right)
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causal conditions, the truth table contains  
2·2 = 4 rows, represented by the corners of 
the square, and the case is located close to the 
lower right corner 10 (that is, presence of the 
first condition and absence of the second).

It is rather clear to which truth table con-
figuration does the case belong to in this 
example, but it would be more difficult to 
assess if the case were located close to the 
middle of the vector space. Ragin’s proce-
dure uses the fuzzy coordinates of each case 
to calculate consistency scores for each of the 
corners and determines which corners are the 
cases more consistent with (or closest to).

The consistency score of this case is the 
set intersection between the first membership 
score (0.85) and the negation of the second 
(1 – 0.18 = 0.82), which is the fuzzy mini-
mum between 0.85 and 0.82, equal to 0.82. 
Provided there is no fuzzy membership score 
of exactly 0.5 (the point of maximum ambi-
guity), there is only one corner to which cases 
have a higher than 0.5 consistency.

The corners of the vector space can be 
interpreted as genuine ideal types in the 
Weberian tradition, which an imperfect 
fuzzy configuration is most similar to. Upon 
determining where each case is ideally posi-
tioned in the truth table configurations, the 
algorithm proceeds with the same Boolean 
minimization procedure as in the crisp ver-
sion in order to identify minimally sufficient 
configurations that are related to the presence 
(or absence) of an outcome.

It is beyond the purpose of this chapter to 
offer a complete presentation of the QCA 
procedure with all its details. There are entire 
books written for this purpose (Ragin, 2000, 
2008; Rihoux and Ragin, 2009; Schneider 
and Wagemann, 2012; Duúa, 2019), and the 
interested reader is invited to consult the 
relevant literature. The main purpose was 
to reveal how the language of sets and the 
Boolean algebra can be employed for social 
and political research.

To conclude, set theoretic methods are 
rather young compared with the long- 
established quantitative tradition, but they 

already compensate through a sound and 
precise mathematical procedure that uses set 
relations (subsets and supersets) to identify 
multiple conjunctural causation, where the 
outcome can be produced via several (suffi-
cient) combinations of causal conditions.

Different to the strict statistical assumptions 
in the quantitative analysis, the causal condi-
tions in QCA are not assumed to be independent 
of each other. What matters is how they con-
junctively combine to form sufficient subsets 
of the outcome, and their relevance in terms of 
both coverage of the outcome and how well they 
explain the empirically observed configurations.
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