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Abstract

Comparative analysis is an important methodological tool in the social sciences, a via me-
dia between qualitative and the quantitative research designs. It extends classical qualitative
analysis through a systematic method of comparing cases, and complements quantitative data
analyses through a novel approach involving a mathematical algorithm that employs Boolean
algebra. When it is difficult to apply statistics due to a very small number of cases, comparative
analysis can still uncover important causal patterns. Unlike regression-based techniques that
rely on symmetric correlations, qualitative comparative analysis presents an alternative way to
analyse social science data using set theory, by comparing all possible pairs of cases to determine
which causal conditions are redundant (not associated with the outcome of interest) and which
configurations of surviving causal conditions are minimally sufficient for the outcome. This
methodology allows researchers to identify causal relevance from even a small number of cases,
combining Boolean algebra with philosophical concepts such as sufficiency and necessity, as well
as counterfactual analysis. Specific to Boolean algebra and Qualitative Comparative Analysis
is a feature called equifinality, identifying multiple causal paths that lead to the same outcome.

Introduction

Unlike the natural sciences (especially the physical ones) where controlled experiments can be orga-
nized in dedicated laboratories, research in the social sciences is very different. Leaving aside that
isolating all possible factors except for the experimental treatment would be practically impossible,
it is ethically forbidden to apply mass social experiments.

The only possible way to understand the human, social life is through observation, comparing events
for similarities and differences. Daniele Caramani (2009) made an excellent, historical overview
of the comparative method, from John Stuart Mill’s cannons to their application in social (and
predominantly sociological) classical theory by Emile Durkheim and Max Weber.

Durkheim (1982) postulated that “comparative sociology is not a particular brand of sociology, it
is sociology itself” (p.157). Indeed, everything in the social sciences is a matter of similarity and
difference. The components of the social life start to make sense only when comparing units, for
instance the same person, region or country can be either rich or poor depending on a reference
point.

More complex situations appear when analysing causal relationships between different phenomena,
when the infinite complexity of the social life makes it extremely difficult to pinpoint very specific
effects of certain causal conditions over an outcome of interest. This is partly due to the difficulty of
accurately measuring social phenomena, and partly because the effects combine and it is difficult to
isolate individual influence. Weber’s ideal type is a helpful methodological tool, making it possible
to identify at least some combinations of factors that act together to instantiate the outcome.

While Weber used his ideal types in the context of what he referred to as mental experiments, more
recently sociologist Charles Ragin (1987) found a novel way to use these ideal types in a systematic
fashion, adapting an algorithm stemming from electrical engineering to the social sciences.
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Ragin’s comparative method uses the so-called truth tables, another methodological tool that is
attributed to the German philosopher Ludwig Wittgenstein, later introduced in the social sciences
by American sociologist Paul Lazarsfeld with his attribute space, or what is currently known as a
property space.

As will be shown in the next sections, no instance is perfectly similar to the ideal, but they all
cluster close to common configurations of ideal types. Instances differ from one another depending
on where they are positioned in the property space: those which cluster in different configurations
are said to be different in kind while those which cluster around the same configuration are said to
be similar in kind but different in degree.

Two other comparative strategies have a similar logic to Mill’s inductive canons, identified and used
by Adam Przeworski and Henry Teune (1970):

• MSSD (most similar systems design) studies cases that are as similar as possible, assuming
their high similarity increases the chances to find the factors responsible for their differences

• MDSD (most different systems design) studies cases that are as different as possible, to
demonstrate the causal effect is strong enough under different conditions.

Both of these systems can be further combined on cases that display the same outcome, or on cases
that display different outcomes, a key methodological technique that paved the way to Ragin’s own
contribution: qualitative comparative analysis (QCA).

Binary system and Boolean algebra

Dating back to the ancient Chinese terms of Yin and Yang that describe the duality of nature, the
binary system made its way into Western culture around the 18th century through the work of
philosopher and mathematician Gottfried Leibniz. His strong belief in the power of symbols for
human understanding led him to invent a binary mathematics that used only two values: 1 and 0.

Leibniz devoted his entire life to this system, and his philosophy led him to believe it has divine
origins, with mystical properties whereby 1 represents the good and 0 the evil. Without any concrete
applications, he created transformation methods from base 10 to base 2, and even constructed a
special machine that did that automatically. The academic community of his time ignored his work
and its applications had to wait over 200 years until computers appeared and his binary system
spread to an extent that only Leibniz could have dreamed of.

About 150 years after Leibniz, around the middle of the 19th century, another great mathematician
named George Boole refined the binary system until it became useful for logics and mathematics.
The academic community again ignored this work, with its first applications appearing decades
later at the Massachusetts Institute of Technology (MIT) in the United States. Similar to Leibniz,
the special algebra he created uses only two values (0 and 1), but Boole’s contribution was to
substitute these values for false and true.

The first real applications of the Boolean algebra, that had a dramatic effect on today’s society,
appeared in electrical engineering where truth values were adapted to closed and opened gates,
leading to the modern computers that still operate in the binary system.

In its simplest form, Boolean algebra can be described with a series of three basic operations: con-
junctions (logical AND), disjunctions (logical OR) and negations (logical NOT). Briefly presented
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Table 1: Logical AND
A B A·B
0 0 0
0 1 0
1 0 0
1 1 1

Table 2: Logical OR
A B A + B

0 0 0
0 1 1
1 0 1
1 1 1

Table 3: Logical NOT
A ∼A

0 1
1 0

here, these are the building blocks of the modern algorithms that enable QCA, to solve highly
complex research scenarios using the power of Boolean algebra.

The Boolean operations can be best described using Wittgenstein’s truth tables, that display all
possible combinations of antecedents and their truth value result, replacing 0 for false and 1 for
true.

Conjunctions result in a true value only when all antecedents are true. For a result to happen,
all conditions must be met—for instance scientific performance is a function of both intelligence
and hard work. None of these individually generate performance, but in conjunction they lead to
positive outcomes.

In Table 1, the only combination where the result Y is true is found on the fourth row, where both
A and B are true. The conjunction is a is essentially a set intersection (calculated as the minimum
between the values in A and the values in B), formally denoted by an equation such as: A·B ⇒ Y.

Disjunctions result in a true value when any of the antecedents is true. Contrary to the conjunc-
tions, it is always true unless all antecedents are false. Table 2 presents the same combinations of
antecedents A and B, where Y is always equal to 1 (true) except for the first row where both A
and B are false.

Disjunctions play a special role in comparative analysis. One and the same outcome can be produced
by many potential causal configurations, a situation called equifinality or multiple causation. They
are best described as a set union (calculated as the maximum between the values in A and the
values in B), formally denoted with the + sign into an equation such as: A + B ⇒ Y.

Negations are the simplest of the Boolean operations, inverting the truth value of the antecedent:
if the antecedent is false the result becomes true, and if the antecedent is true the result becomes
false, as presented in Table 3. It is sometimes denoted by the ¬ sign, while other textbooks prefer
using a tilde ∼ sign.

Sometimes, certain phenomena can be produced not by an active event, but rather quietly by its
absence. In sociological theory, it is well known that societal anomie tends to grow in the absence
of an established normative system.

All of these operations can be combined in any conceivable ways to produce an outcome, with
various combinations of conjunctions and disjunctions of causal factors, each containing presence
and / or absence of the factors.
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Table 4: Boolean minimization example

A B Y

1 1 1
1 0 1

The logic of qualitative comparative methodology

In the beginning of electrical engineering, the circuits used in control and automated systems used
to quickly grow in complexity with very many gates. The task was to obtain a circuit that was as
simple as possible, eliminating redundant gates but preserving the output of the circuit intact (say,
a lightbulb being lit).

This is remarkably similar to social science research, whereby multiple factors have a potential
contribution in producing a certain event, with the same overall objective to eliminate redundant
factors and preserve only those that are causally relevant in producing the event. Just like in
electrical engineering, the goal is to obtain a causal configuration that is associated with some
event being instantiated.

Maintaining the presence of the event is a key feature: it would be pointless to design an electrical
circuit that does not output the required electrical signal, just as it is pointless to identify causally
relevant factors if the phenomenon of interest does not happen.

The Boolean operations presented in the previous section are heavily employed in the comparative
analysis methodology, with a direct application in what is called Boolean minimization, the most
important instrument of eliminating irrelevant causal factors (from here on referred to as causal
conditions, or simply conditions).

Boolean minimization searches for those causal conditions that are consistently associated with the
presence of the outcome. If some phenomenon A is a truly relevant cause of another phenomenon
Y, then it should always be present when the outcome happens.

Table 4 presents a situation where the outcome Y happens (it has a value of 1) in both instances,
but the condition B is present in the first instance (case) and absent in the second. This is a typical
scenario that eliminates condition B as causally irrelevant. Out of the two conditions, A is the only
one that is consistently associated with the presence of the outcome Y.

This procedure is repeated for all possible pairs of cases, highlighting its comparative nature: for
each pair of two cases, the algorithm has to determine if they differ by exactly one literal (condition),
and if that happens the literal where they differ is eliminated to produce a so-called implicant.
This procedure is iteratively repeated for all possible pairs of subsequently generated implicants,
eliminating everything that can be eliminated, until reaching a solution that contains the smallest
number of causal conditions that are conjunctively responsible with the presence of the outcome.

The higher the number of initial causal conditions, the more possible combinations of two cases will
need to be verified. This makes the procedure not only extremely slow but also potentially reaching
out of memory since the number of generated implicants can quickly grow towards infinity.

Alternative solutions have been found, with better and better algorithms that are faster and con-
sume less and less memory by Adrian Dușa (2010), Dușa and Alrik Thiem (2015), and a more
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recent version called CCubes presented by Dușa (2018) where the final solutions are exactly the
same, but with dramatic improvements in speed and memory management.

It is perhaps important to mention that relevant causal conditions should not (and actually cannot)
be associated with the absence of the outcome. If some causal phenomenon A causes another
phenomenon Y, it means that Y is always produced when A is triggered. In other words, it is
impossible to have the cause but not the effect (to have A in the absence of the outcome Y): when
the cause is present, the outcome will certainly be produced.

The resulting, minimal conjunctions of causal conditions are called prime implicants (or solution
terms), and they can disjunctively combine in various ways to explain (to cover) the observed
configurations where the outcome is present. A QCA solution is therefore a minimal disjunction
of conjunctions of causal conditions that are associated with (sufficient for) the presence of the
outcome.

This is just a summary presentation of the core minimization procedure behind Ragin’s QCA.
He managed to successfully adapt an algorithm designed for electrical circuits to social research,
enabling the analysis of (sometimes qualitative) data that are free from the host of restrictions and
especially assumptions that are so common in the quantitative, statistical tradition.

Methodologically, QCA belongs to a family called configurational comparative methods (CCM;
Rihoux & Ragin, 2009), where complex cases should be transformed into configurations of causal
conditions, in order to allow for systematic comparisons. These methods are specifically designed
to work with small-N or intermediate-N (where statistical analysis is impossible to be applied),
although it is a common misperception that QCA operates only at this level.

In reality, the number of cases is almost irrelevant as it can operate with any number of cases,
starting from as few as two (the absolute minimum to have at least one comparison). What
matters most is the number of unique causal configurations the cases gravitate around, something
that is presented in the next sections.

Set theory

The binary system is well suited for the language of sets. Social science research is also embedded
with sets, although not always explicit. Categories of nominal or ordinal variables (e.g. urban /
rural, men / women) are very similar to sets: the set of people living in urban areas, the set of
females, for example. Mathematics abounds in notions such as the set of real numbers, or the set of
integer numbers etc. In short, a set can be defined as a collection of objects that share a common
property.

Concerning social research in general, and for comparative analysis in particular, there are two
main and formal classes of sets: the crisp family (binary crisp sets, and multi-value crisp sets) and
the fuzzy sets.

In crisp sets, an element is either in or out of a set. A person is either living in a rural area, or not;
is either living or not; either does something or not. Fuzzy sets, on the other hand, can have an
infinite number of values with partial membership of elements to sets.

Ragin’s original QCA book from 1987 exclusively treated the crisp version of sets, and researchers
gradually understood that social life is too complex for such a crude dichotomization. A country
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does not simply belong to the set of democratic countries or not, but almost always has a partial
inclusion in that set.

Answering this criticism, Ragin (2000; 2008) extended QCA methodology to what is currently
known as fuzzy sets QCA (fsQCA). What is perhaps most innovative in this extension is the ability
to reduce an infinite number of possible fuzzy inclusions in sets, to a finite number of ideal-types.
He managed to preserve the classical approach to social research, but boosted the procedure with
the newest mathematical advancements.

In formal notation, binary crisp sets can have only two values: 0 if the element does not belong to
a set, and 1 if the element belongs to the set.

µA(x) =
{

0 if x /∈ A
1 if x ∈ A (1)

Unlike crisp sets, an element can have a fuzzy membership score to a set anywhere between 0 and
1 (Zadeh, 1965). The values 0 (full exclusion) and 1 (full inclusion) are just the extremes of an
infinite continuum, where a value such as 0.1 signals a very small inclusion in the set, whereas 0.97
signals a very high (almost complete) inclusion. The value 0.5 is the point of maximum ambiguity
in fuzzy set relations, and it is usually avoided by QCA practitioners.

Having the same interval of variation with probabilities, between 0 and 1, fuzzy sets are sometimes
confused by quantitative researchers. The difference should be clear though, with a simple example.
If there is a probability of only 1% that a stove is very hot, then there is a small (but definitely
existing) chance to get severely burned by touching it. In fuzzy sets, if the stove has an inclusion
of 0.01 in the set of very hot objects, there is absolutely no risk of getting burned by touching it.

The values 0 and 1 play a key role in comparative analysis, referring to ideal types. Continuing
with the democracy example, no country in the world has a value of 0 (completely excluded from
the set of democratic countries). Any country has at least some partial membership in this set,
even if very small. To the other extreme, 1 refers to a complete inclusion in the set of democratic
countries, and it should be stressed again that no country in the world has a complete inclusion
in this set. Even in the most democratic countries, there are at least some undemocratic activities
that prevents a perfect inclusion score.

Instead, the values of 0 and 1 refer to “ideal-typical” situations that do not exist in reality but
researchers nevertheless use them to describe cases that are more or less near one of the extremes.
This is precisely what Weber recommended when he developed his social science research method-
ology.

But set membership scores are not limited to only 0s and 1s. Multi-value crisp sets can have
any number of unique whole numbers (referring to crisp intermediate states between 0 and 1), as
proposed by Polish mathematician Jan Łukasiewicz (1970) and generalized to multi-valent systems
with n = v − 1 values, obtained through a uniform division of the interval [0, 1]:

µA(x) =
{

0 =
0
n
, 1

n
, 2

n
, . . . , n

n
= 1

}
(2)
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Figure 1: Typical fuzzy calibration using a logistic function

The calibration process

Operating in paired comparisons, the QCA algorithm requires that all data should be provided
in set membership scores with all values ranging from 0 to 1. A key step in this comparative
methodology is to coerce the raw data to fuzzy or crisp sets, a process called calibration. The input
raw data are usually numeric, although there are some possibilities to transform categorical data
into fuzzy values.

Calibrating numerical raw data to binary crisp sets is essentially a recoding procedure, specifying a
certain threshold: values below are recoded to 0 and values above are recoded to 1. Recoding into
multi-value crisp sets is just as simple, specifying two or more thresholds. The general procedure
produces x + 1 values, where x is the number of thresholds: one threshold produces a two valued
(binary) crisp condition, two thresholds produces a three valued crisp condition, and so on.

Calibrating into fuzzy sets is more challenging and requires a certain level of practical and theoretical
expertise. Despite the precise mathematical procedures to achieve this type of calibration, it is far
from a mechanical process since it involves a set of thresholds that are highly qualitative and theory
dependent.

The most well known calibration procedure is called the direct method, described by Ragin (2000)
and illustrated in Figure 1. The fine grained fuzzy membership scores follow a logistic function
(with its specific s-shape) that needs a set of three thresholds: one to determine the full inclusion
in the set (I), one to determine the full exclusion from the set (E) and the cross-over point of
maximum ambiguity (C). The choice of thresholds should be an informed one, based on theory,
and the thresholds should reflect unambiguous changes in the interpretation of the numerical data.

Ragin explains this process by appealing to the values of 0 degrees Celsius (at which water freezes)
and 100 degrees Celsius (at which water boils). Compared to the millions of degrees at the surface
of the Sun, a difference of 100 degrees seems unimportant but this precise temperature span reflects
the two points where water changes its aggregation state: from liquid to solid and from liquid to
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Figure 2: Comparison of linear and logistic calibration functions

gas. Despite their numerical values these are qualitative thresholds that are humanly interpretable,
rather than having some intrinsic mathematical properties.

In the same vein, researchers should identify those numerical values at which their conditions
change in quality. How high should gross domestic product (GDP) be to consider a country (surely)
developed? How high should a democracy score be for a country to be considered fully included in
the set of democratic countries? The same kind of questions refer to the opposite side, establishing
thresholds for full exclusion from the set of developed countries, or from the set of democratic
countries.

“Development” and “democracy” are complex concepts that can have multiple definitions, and
based on how they are defined, the choice of thresholds can be different. A definition that holds
in a certain country or culture (e.g. ethics, perceived discrimination) might be very different for
another, especially if the definitions are specific to one nation or another.

Even for the same definition, in the same country, the thresholds’ values can change in time. For
instance referring to age in the mid 19th century, the meaning of “old” was very different than
today. In some countries, the life expectancy at that time was about 40 years, whereas in the 21st
century a person at the same age in Japan (with a life expectancy of more than 80 years) could
be considered even young. Studies about social distance, as defined by Emory S. Bogardus, would
likely yield different results almost a century later due to the increased diversity of races and ethnic
groups in the present society.

A good practical advice in comparative studies is to always include methodological details regarding
the calibration process for every causal condition included in the analysis, so that other researchers
can replicate the results using the same set of thresholds.

The logistic function, although widely used due to its use in the fs/QCA software by Ragin and Sean
Davey (2017), is only one way among others to obtain set membership values. Figure 2 presents
an alternative, linear function with a monotonic increase from lower left (full exclusion) towards
the upper right corner (full inclusion).
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This particular linear function also needs a set of thresholds, as well as other parameters presented
in Equation 3, and it is available in other software, particularly in the R programming environment
as presented by Thiem and Dușa (2012), and Dușa (2019).

dmx =


0 if x ≤ e,
1
2

( e − x
e − c

)b if e < x ≤ c,
1 − 1

2

( i − x
i − c

)a if c < x ≤ i,
1 if x > i.

(3)

where:

• e is the threshold for full exclusion
• c is the crossover
• i is the threshold for full inclusion
• a and b determine the shape above and below the crossover

Such linear calibrations are capable of things outside the realm of the logistic function, for instance
calibrating using a trapezoidal function (a bell-shape if smooth), assigning full membership in the
middle and excluding very low and very high values. If researchers are interested to explain or to
introduce in the explanation the set of medium developed countries, the bell shape functions are
the only solution.

Categorical raw variables are also subject to calibration. For instance Nicolas Legewie (2017)
proposes an interesting method to calibrate purely qualitative data using an anchored framework.
While there is little to complain against the systematic method, it is questionable that a single
categorical variable can capture the whole complexity of a social science concept.

While categories of nominal variables can be directly transformed into binary crisp sets (a process
very similar to obtaining dummy variables in various regression analyses), more attention is needed
with categories from ordinal variables (most notably, those with a Likert-type response scale). It is
tempting to assume these variables follow an underlying continuous distribution and assign fuzzy
membership scores to each category, a process called direct assignment (Verkuilen, 2005), which is
a very weak and highly subjective type of calibration.

In general, if the number of ordered categories is small (up to 3 or 4) a solid possible strategy is
to calibrate to a multi-value crisp set. When the number of categories is large, another possible
solution is to use the so-called totally fuzzy and relative (TFR), using an empirical cumulative
distribution function (E) and calculating the distance from each CDF value to the cumulative
distribution function of the first category in the response scale, as in Equation 4:

TFRx = max
(

0,
E(x)− E(1)

1 − E(1)

)
(4)

Causation, necessity and (robust) sufficiency

Burke R. Johnson, Federica Russo and Judith Schoonenboom (2019) provide an overview of the
causal interpretation in mixed methods research, from its philosophical roots (Hume, 1999; Mackie,
1974; von Wright, 1975) to modern probabilistic and statistical modeling of causation. All major
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thinkers agree that causal analysis in the social sciences is a difficult endeavor. For some obvi-
ous events it is easy to identify what people normally refer to as causes, but it is not exactly
straightforward for events with a more complex structure.

It is, however, possible to identify a set of causal factors that are associated with an outcome,
by identifying those that act as difference-makers; that is, the formation of such a set makes a
qualitative difference on the outcome. Since no exact relation can be observed between a single
cause and a single outcome, philosophy and social science methodology provide a good replacement
in the concepts of sufficiency and necessity

Sufficiency and difference-making theories are compatible, both stating that for the outcome to
occur the cause needs to occur as well (in this context, a “cause” is almost never a single cause but
rather a conjunction of multiple causal factors, both in their presence and absence). When a cause
X is sufficient for the outcome Y, then Y is always present when X occurs, and X does not occur
in the absence of Y. In formal notation, sufficiency is denoted by: X ⇒ Y

Necessity is a mirrored concept, in that when X is a necessary condition for an outcome Y, then
X is always present when Y occurs and Y does not occur in the absence of X. In formal notation,
necessity is denoted by: X ⇐ Y.

In many situations, a causal condition can be sufficient without being necessary. This is the very
definition of equifinality, when the outcome is produced in many different ways. In the other
direction, a causal condition can be necessary but not sufficient, which is the essence of John Leslie
Mackie’s philosophy of causation and his well-known INUS: insufficient but necessary part of an
unnecessary but sufficient condition. An INUS condition is therefore part of a sufficient conjunction,
which is itself one way among many other to instantiate the outcome.

In set theory, sufficiency and necessity can be expressed as a subset / superset relations: if a causal
condition is sufficient, it is a subset of the outcome, and if a causal condition is necessary, it is a
superset of the outcome. That the outcome Y needs to be a subset of the causal condition can be
counter-intuitive, but it makes sense when considering what necessity logically means. For a fire
to happen, heat is a necessary condition (in the absence of which fire would not start) but a fire
cannot happen only in the presence of heat.

Other INUS conditions are conjunctively needed (like oxygen and a spark), but the fact is heat is
omnipresent in all situations where a fire is started. Heat is a superset of the outcome fire, given
there are many situations where there is heat without a fire. The other way round, whenever there
is fire heat is present too, which makes the fire outcome a subset of the heat set.

The subset / superset relations pave the way for another two important concepts in QCA:

• inclusion (which Ragin calls consistency), and
• coverage.

Inclusion should be self explanatory, it shows the proportion of a set X that is included into another
set Y. It is calculated as the set intersection between the two sets X and Y, divided by the entire
space of the set X.

inclSX ⇒ Y =
∑ min(X, Y)

∑ X
(5)

Figure 3 shows an almost complete inclusion of the causal set X into the outcome set Y, using a
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Figure 3: Almost complete inclusion of X into Y

Venn/Euler diagram in the left side and what is called a fuzzy XY plot in the right side. They are
both typical diagrams to signal (an almost perfect) sufficiency, the reason for which it is written
as inclS in Equation 5. Distinctively in the XY plot, almost all points are located above the main
diagonal.

Coverage is the proportion of space from the outcome set Y that is covered by the set X. The more
space is covered by X, the more causally relevant is X for Y (vaguely similar to the coefficient of
determination R2 from the linear regression).

covSX ⇒ Y =
∑ min(X, Y)

∑ Y
(6)

Necessity and sufficiency are twin concepts, inclusion for sufficiency having the same formula as the
coverage for necessity, and the coverage for sufficiency is the same as the inclusion for necessity. In
his contributions to the analysis of necessity, Gary Goertz (2006) differentiates between relevance
and trivialness (for instance, air is a trivial condition for a fire, since it is omnipresent), proposing a
measure of trivialness that was fine-tuned by Carsten Q. Schneider and Claudius Wagemann (2012)
in their relevance of necessity measure:

RoN =
∑(1 − X)

∑(1 − min(X, Y))
(7)

The relevance of necessity should not be confused with the concept of “causal relevance”, which is
related to sufficiency.The point of qualitative comparative analysis is to apply the Boolean mini-
mization algorithm in order to eliminate as many irrelevant conditions as possible, preserving only
those conditions that are causally relevant. The surviving prime implicants (conjunctions of causal
conditions) are always sufficient for the presence of the outcome.
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Table 5: Sufficiency in material implication (T = true, F = false)
X Y X ⇒ Y

F F T
F T T
T F F
T T T

Boolean minimization sufficiency is different from the sufficiency concept defined in formal propo-
sitional logic from Table 5. Material implication is also a logical form of sufficiency, namely that
anything is sufficient for anything as long as there is no counter proof. The sufficiency statement
X ⇒ Y holds true for all possible combinations between a cause X and an outcome Y, except for
the third row where the outcome does not happen (it is false), while the cause is present (it is true).

In propositional logic, that is the only possible way to invalidate a sufficiency statement. This
property has an application in causal analysis, in that any causal condition that passes the test of
material implication is bound to be causally relevant. However, that is not a guarantee the cause
is atomically sufficient, does not guarantee the outcome happens only in the presence of causal
condition X alone (other causal conditions might conjunctively be needed to make the outcome
happen).

This is the reason why a distinction must be made between the concept of “sufficiency” that is
common in both causal analysis and material implication), and “robust sufficiency” which is the
type of sufficiency that passes the test of Boolean minimization and guarantees the outcome always
happens in their presence.

The quest for causal relevance is a double effort involving parsimony (Baumgartner, 2015) but also
robust sufficiency. Favoring parsimony at any cost runs in the risk of losing robust sufficiency,
which might not always be optimally parsimonious (it might contain irrelevant conditions that are
not causal), but on the other hand the outcome is guaranteed to happen.

Constructing the truth table

The analysis of necessity and the analysis of sufficiency are key methodological tools in QCA. For
the analysis of sufficiency, following the introduction from the first section, researchers need to
construct a truth table that contains all possible combinations of presence and absence of the
causal conditions introduced in the analysis.

The configurations of the observed cases are allocated to specific rows from those rows in the
truth table to which they resemble most. For crisp sets that is extremely simple, the observed
configurations having exactly the same values as the corresponding truth table configurations.

Table 6 contains all possible configurations for the values of two binary crisp conditions A and B. As
both of them are binary crisp (each having two values 0 and 1) there are four possible configurations:
both absent, one of them present and the other not, and both present. For binary crisp conditions
(the most common analytic scenario), the total number of truth table configurations is equal to 2k,
where k is the number of causal conditions.
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Table 6: Truth table configurations for two causal conditions A and B
A B OUT
0 0
0 1
1 0
1 1

A more general and equivalent formula for the number of rows in a truth table, that covers multi-
value conditions as well as binary crisp, is the product of the number of levels l for all k causal
conditions as given in Equation 8:

k

∏
c=1

lc = l1 × l2 × · · · × lk (8)

The output column OUT will contain the value of the outcome (either presence or absence), function
of the cases that are allocated to each row of the truth table. The allocation process is relatively
simple for crisp data, but fuzzy sets are more challenging because they tend to resemble multiple
configurations.

On one hand, the Boolean minimization algorithm works precisely because the input data is Boolean,
with an exponential but still finite number of possible configurations. On the other hand, fuzzy sets
have an infinite number of possible values, and no algorithm can deal with that kind of information.
The procedure to reduce the fine grained fuzzy sets to a finite, crisp equivalent in the truth table
was introduced by Ragin (2008).

Ragin used the traditional idea that truth table configurations are the corners of a multi-dimensional
vector space, and the combination of fuzzy values specific to each case is more or less close to one
of these corners. They can be located in the immediate proximity of many corners (especially when
some of the set membership scored are near the point of maximum ambiguity), but it is only one
corner they are closest to. In a similar interpretation, no real-life case is ever perfect but all cases
resemble a certain ideal type.

Figure 4 illustrates the simplest possible examples of a case being closest to the corner “10” (first
condition present, second absent) in a bidimensional vector space corresponding to two causal
conditions, and respectively closest to the corner “100” in a three-dimensional vector space. To
determine exactly at which corner the cases belong to, Ragin’s procedure involves calculating an
inclusion score for all possible pairs of cases and corners, in a matrix having all cases on the rows
and all truth table rows on the columns.

This procedure is simple for a small number of conditions, but as more are introduced the number
of pairs becomes larger and larger. An improved method was introduced by Dușa (2019) with only
two steps:

• determining at which causal conditions the cases have an inclusion score above 0.5 to obtain
a vector of 0s and 1s, and

• calculating its Hadardmard product with a vector formed by the cumulative product of the
number of levels for all causal conditions except the last, and starting with 1.
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Figure 4: Vector space for two conditions (left) and three conditions (right)

Once the cases are allocated to the truth table configurations, Ragin’s procedure has to determine
the value of the OUT column, that is a function of the consistency score with the outcome, calcu-
lated from the causal conditions data corresponding to the corners. For instance, a corner such as
100 is equivalent to a conjunction of three causal conditions A∼B∼C, where the conditions B and
C are negated. The consistency score for this corner is calculated between the intersection (taking
the minima) of the transformed data, against the outcome.

If the value of this consistency (inclusion) score is greater than a certain threshold that is determined
by the researcher (good practice advice suggest no less than 0.7, preferably at least 0.8) the OUTput
column is coded as 1, otherwise 0. In this way, all observed cases participate in calculating the
consistency score with each of the rows in the truth table that have at least one allocated case.

When the number of causal conditions is very large, most of the rows in the truth table will have
no cases allocated. That happens because of the phenomenon called limited diversity which is
especially specific to the social sciences. The reality we observe is not random and therefore does
not cover all possible, conceivable causal scenarios. Quite the contrary it follows certain patterns,
which means that more observed cases do not necessarily contribute to more diversity but simply
cluster together in the same corners.

This is a strength of the Qualitative Comparative Analysis, where the emphasis is less on the
number of cases (as in statistics) but rather on the number of observed causal configurations. It
can operate with a medium N as well as with a large N, and after a certain threshold the number
of cases becomes almost irrelevant because of the limited diversity, when additional cases will only
pile up in the already identified causal configurations. Truly important is to observe all causal
configurations that do exist, for any one that is missed can lead to potentially incomplete or
sometimes even erroneous conclusions.

Table 7 presents the truth table for the fuzzy version of Seymour Martin Lipset’s (1959) data, using
a 0.7 inclusion cut-off, where DEV means level of development, URB is the level of urbanization,
LIT the level of literacy, IND the level of industrialization and STB is government stability. Lipset’s
indicators for the survival of democracy (outcome, denoted by SURV in the original data) during
the inter-war period is a well-known data set in political science and has been used as example data
in most chapters in Benoit Rixoux and Ragin’s Configurational Comparative Methods. Qualitative
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Comparative Analysis (QCA) and Related Techniques (2009).

Table 7: The truth table for the Lipset data

DEV URB LIT IND STB OUT n incl PRI cases
32 1 1 1 1 1 1 4 0.904 0.886 BE,CZ,NL,UK
22 1 0 1 0 1 1 2 0.804 0.719 FI,IE
24 1 0 1 1 1 1 2 0.709 0.634 FR,SE
6 0 0 1 0 1 0 1 0.529 0.228 EE
5 0 0 1 0 0 0 2 0.521 0.113 HU,PL
31 1 1 1 1 0 0 1 0.445 0.050 DE
23 1 0 1 1 0 0 1 0.378 0.040 AU
2 0 0 0 0 1 0 2 0.278 0.000 IT,RO
1 0 0 0 0 0 0 3 0.216 0.000 GR,PT,ES
3 0 0 0 1 0 ? 0 - -
4 0 0 0 1 1 ? 0 - -
7 0 0 1 1 0 ? 0 - -
8 0 0 1 1 1 ? 0 - -
9 0 1 0 0 0 ? 0 - -
10 0 1 0 0 1 ? 0 - -
11 0 1 0 1 0 ? 0 - -
12 0 1 0 1 1 ? 0 - -
13 0 1 1 0 0 ? 0 - -
14 0 1 1 0 1 ? 0 - -
15 0 1 1 1 0 ? 0 - -
16 0 1 1 1 1 ? 0 - -
17 1 0 0 0 0 ? 0 - -
18 1 0 0 0 1 ? 0 - -
19 1 0 0 1 0 ? 0 - -
20 1 0 0 1 1 ? 0 - -
21 1 0 1 0 0 ? 0 - -
25 1 1 0 0 0 ? 0 - -
26 1 1 0 0 1 ? 0 - -
27 1 1 0 1 0 ? 0 - -
28 1 1 0 1 1 ? 0 - -
29 1 1 1 0 0 ? 0 - -
30 1 1 1 0 1 ? 0 - -

As can be seen, most of the configurations on the rows are empty and have a question mark in the
OUT column, indicating the limited diversity phenomenon. As such, the truth table contains three
categories of configurations:

• the positive configurations, those which have been allocated at least one case and the output
was determined equal to 1 (outcome is present at the top, with a dark grey background)

• the negative configurations, those which have been allocated at least one case and the output
was determined equal to 0 (outcome is absent, with a light grey background)

• the so-called remainders, those which lack empirical evidence (have no observed cases allo-

15



cated) making it impossible to determine a value for the output column

Deriving the solutions

Once the truth table is constructed, the next stage is set to perform the Boolean minimization
process, with the explicit intent to eliminate the irrelevant conditions and obtain a causal recipe
where all surviving conditions make a difference on the outcome. This involves a series of steps and
a sequential dialogue with the data, starting with the classical complex solution (QCA-CS), then
gradually introducing counterfactual assumptions to further refine it.

QCA-CS strictly uses the observed, positive causal configurations from the truth table. Depending
on the number of causal conditions and on the number of observed configurations, this type of
solution can be more or less simplified but usually not very much. Sometimes, if the observed
configurations are very different they cannot be minimized at all and QCA-CS is identical to the
initial positive observed configurations.

In the Lipset truth table, there are three positive observed configurations: DEV·URB·LIT·IND·STB,
DEV·∼URB·LIT·∼IND·STB, and DEV·∼URB·LIT·IND·STB. Following the Boolean minimiza-
tion principles:

• DEV·URB·LIT·IND·STB and DEV·∼URB·LIT·IND·STB minimize into DEV·LIT·IND·STB
(URB being irrelevant), while

• DEV·∼URB·LIT·∼IND·STB and DEV·∼URB·LIT·IND·STBminimize into DEV·∼URB·LIT·STB
(this time IND being irrelevant).

Neither of these last terms can be further minimized, therefore QCA-CS is their disjunction, or
logical union:

DEV·LIT·IND·STB + DEV·∼URB·LIT·STB ⇒ SURV

It is also called the conservative solution, because it makes no counterfactual assumptions on
the remaining unobserved configurations. These remainders play a central role in the Boolean
minimization algorithm, allowing researchers to make inferences beyond the observed empirical
data. In the absence of pure experimental data, counterfactual analysis is actually very common in
the social sciences (Mahoney and Barrenechea, 2017; Morgan and Winship, 2015), with an example
from David Hume (1999):

we may define a cause to be an object followed by another, and where all the objects,
similar to the first, are followed by objects similar to the second […] Or, in other words,
where, if the first object had not been, the second never had existed (p.37)

Expressions such as “if X were true, then Y would happen”, where the condition X is not empirically
observed, is a typical counterfactual statement. In order to further minimize the conservative solu-
tion, the overall strategy is to counterfactually analyze the remainders. Assuming that everything
that is unobserved (all remainders) would lead to the presence of the outcome, is the most aggres-
sive form of minimization leading to what is called the parsimonious solution (QCA-PS) which has
the smallest number of relevant causal conditions.

Concretely, QCA-PS involves all truth table configurations where the OUT column is not equal to
0 (the positive ones and the remainders), and iteratively minimize until all irrelevant conditions

16



are eliminated. The following solution is thus produced:

DEV·STB ⇒ SURV

Both DEV and STB are surely relevant causal conditions, and this compact solution seems to offer
a more attractive and clear perspective over what determines the survival of democracy. In reality,
it is highly questionable if some of the remainders can truly be associated with the presence of the
outcome.

Table 8 presents a hypothetical dataset with the relation between pregnancy, being a female or a
male and the outcome of extremely safe driving, with the hypothesis that pregnant females drive
extremely safe. There are three observed cases, and only in the first the outcome is present. Since
all causal conditions are measured in binary crisp sets, the truth table corresponding to these data
is exactly the same, with a single remainder on the fourth row.

The conservative solution for these data corresponds to our hypothetical expectation that P·F
⇒ ESD, whereas QCA-PS shows that pregnancy alone is sufficient to explain the extremely safe
driving: P ⇒ ESD. While pregnancy is indeed causally relevant, as it happens QCA-PS made use
of the fourth row (the unobserved remainder) which happens to be an impossible configuration
because it represents a pregnant male.

Faced with such situations, Ragin and John Sonnett (2005) developed a procedure that prevents
some of the remainders from being used in the minimization process, introducing the so-called
directional expectations, resulting in a third type of solution called intermediate (QCA-IS), that
is located in between the complexity space having QCA-CS and QCA-PS at the extremes. The
entire process is known as the Standard Analysis (SA), which was later extended by Schneider and
Wagemann (2013) into the Enhanced Standard Analysis (ESA), that further eliminates remainders
that are impossible, difficult, contradictory or untenable.

QCA-CS and QCA-PS are not just the opposite ends on the complexity continuum, they are both
some sort of “ideal” types of solutions. One of them strives for robust sufficiency but sometimes
allows non-causal conditions in the solution, while the other strives for parsimony and strictly
preserves only the causally relevant conditions but it sometimes sacrifices the robust sufficiency.

The ideal solution is the most parsimoniously possible, robustly sufficient solution. Both types of
solutions are desirable, despite the fact they act in opposite directions. QCA-IS seems to be the
one that satisfies both goals, but requires the researcher to make informed and well documented
decisions about what remainders to include, as well as what remainders to exclude from the Boolean
minimization process.

Table 8: Relation between pregnancy (P), females (F) and extremely safe driving (ESD)
P F ESD
1 1 1
0 0 0
0 1 0
1 0 ?
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QCA compared to regression

There seem to be high entry barriers for a new research methodology, just like a new competitor
in a market. It was to be expected that an alternative methodology would raise a lot of criticism,
especially from quantitative researchers, but as it turns out most of that criticism is due to an
expectation that QCA would function in a similar way to a regression model.

Despite presenting some similarities, in that both QCA and the regression techniques propose
explanatory models with a number of “causal conditions” (in QCA) or “independent variables” (in
regression) plus an “outcome” or a “dependent variable”, their analytic procedures are different.

Numerous papers already considered using QCA versus the regression analysis, comparing the two
(Grofman & Schneider, 2009; Katz, vom Hau & Mahoney, 2005; Seawright, 2005), using moderate
sample sizes but also large samples as well (Schneider & Makszin, 2014; Vis, 2012), triangulating
(Skaaning, 2007) or integrating them (Fiss, Sharapov & Cronqvist, 2013), and even combining the
two into a multi-method approach (Stolz, 2015).

What is clearly common in most of the critical papers is an attempt to evaluate the set theoretic
comparative methods (STCM) as if they were answering the same fundamental questions that are
presented in the quantitative research, in the spirit of Gary King, Robert O. Keohane and Sidney
Verba’s Designing Social Inquiry (1994) and its subsequent continuation Rethinking Social Inquiry:
Diverse Tools, Shared Standards from Henry E. Brady and David Collier (2010).

James Mahoney (2010) does a thorough forensic analysis on both these classical resources for
quantitative analysis, and reveals one of the main differences between the regression analysis and
QCA, since researchers:

… distinguish between approaches that seek to estimate the average effect of particular
independent variables (that is, effects of causes) from those that attempt to explain why
specific cases have particular outcomes (that is, causes of effects)… (p.132)

The difference between the effects of causes (EoC) and causes of effects (CoE) is also treated by
Judea Pearl (2015), but from a very different perspective involving conditional probabilities, to
claim that individual cases can be counterfactually determined from statistical data. As interesting
as it is, such a framework still requires a prior large sample of experimental data before calculating
such probabilities, which is not always the situation in social and political sciences, a problem
leading to another potential difference between applying QCA or regression techniques: sample
size.

A typical situation in macro-comparative research involves a dataset containing a small number of
cases (most often, countries). The obvious advice coming from quantitative research is to collect
large samples from each country that would facilitate a proper statistical analysis, but there are
situations when countries are compared only for aggregated measures such as GDP, a proxy for the
level of development. If studying a particular group of countries (e.g. in a particular geographical
region), the sample size can be anywhere between 2 and 15, which is not nearly enough for a
statistical analysis due to the very small and rapidly decreasing number of degrees of freedom
(Mahoney, 2010; Rubinson & Ragin, 2007).

Regression techniques focus on the average net effects of competing independent variables, control-
ling for all other variables in the model, while QCA focuses on cases understood as configurations
of causal conditions. This is another difference between the two frameworks, the first being vari-
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able oriented and the second being case oriented. Consequently, their analytic and mathematical
procedures are different, as also observed by Thiem, Michael Baumgartner and Damien Bol (2016).

For a quantitative researcher trained in the linear algebra tradition, the equation A + 1 = 1 would
be very peculiar. But that makes perfect sense from a set theoretical point of view using Boolean
algebra, where the “+” sign (unlike the linear algebra where it means an addition) signals a logical
disjunction, or a set union, and the number 1 signals the entire universe. The union between the
universe and anything (A) is still the universe, given that A is part of the universe anyways. A
similar line of thought explains why the equation A ∗ A = A holds in the Boolean algebra (where
the sign “*” stands for a set intersection, a logical conjunction), whereas in linear algebra it is equal
to A2 (given the same sign involves a multiplication).

The quantitative tradition set by King, Keohane and Verba (1994) largely ignores set theory where
cases are compared against each other, and favors a statistical framework where values are compared
against the measures of central tendency such as the mean or the median. Both frameworks
use the terms high and low, but whereas linear algebra identifies values that are higher or lower
than the average, in Boolean algebra a value is high only through a reference to an established
theoretical standard, as described in the section about calibration. Defining sets and attributing
set membership scores is tightly linked to the process of concept formation, which is largely missing
in the quantitative approach.

This has a direct influence over how researchers relate to their data. It would not be possible for
the quantitative approach to generate theories, but only to test theories using inferential statistics.
In QCA and general qualitative approaches, cases are compared to identify configurational patterns
that would help in advancing a theory about an outcome of interest.

For purposes of causal analysis, neither approach has a definitive answer. Just as correlations do
not entail anything about causation, patterns of association are not a guarantee that configurations
are causal. However, it is likely that set theoretic methods are closer to achieving the objective of
identifying causes, since their purpose is to detect regularities in the data. Researchers may never
know what the true causal model really is, but at least it is possible to assess whether hypothesized
causal conditions are necessary, or sufficient, or more often if they are conjunctive INUS conditions
as defined by Mackie (1974).

Neither framework is fail proof at the problem of omitted variables, as shown by Claudio M. Radaelli
and Claudius Wagemann (2018). Researchers may never be certain their theoretical models are
completely specified, or that they have correctly specified the set of control variables. In the
regression analysis, some of these problems can be detected by inspecting the residual plots: if a
relevant variable is omitted from the model, its effect is transferred to the residuals which correlate
with the independent variables. On the other side in QCA, mid-sized raw consistency values could
be an indicator of omitted causal conditions, just as the presence of contradictory cases located in
the lower-right part of the XY plots.

While regression searches for “the” perfect model, perhaps another way to approach the research
situation is to ask whether there are multiple, equally valid models that explain a certain outcome.
This is a sensible approach if considering causal complexity and equifinality, that postulates the
same outcome can be achieved via many causal paths, sometimes using different sets of causal
conditions.

Configurational patterns are commonly considered to be similar to interaction effects in the re-
gression analysis, but Tammo Straatmann and colleagues (2017) show that interaction effects in
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regression are not always significant even when QCA points to relevant configurations. The lack of
significance for a regression coefficient does not necessarily mean there is no relationship between
the independent variable and the dependent variable, but rather the relationship might not be
symmetric and additive.

That is yet another difference between the two frameworks: while regression (involving correlations)
are defined by causal symmetry, set relations are defined through causal asymmetry: there are
different explanations for how an outcome occurs, versus how an outcome does not occur.

Finally, regression models are applicable only in those situations where the underlying assumptions
are met. If the scatterplot is not linear, there can be no linear regression. If the variables are
not normally distributed, and for multiple regression if multivariate normality is not met, the
regression model cannot be applied. The list of assumptions is quite large (e.g. no multicollinearity,
no heteroskedasticity, no autocorrelation), whereas QCA models are indifferent of such assumptions.

While geared towards revealing the differences between the two research frameworks, the purpose of
this section is not to show that one outperforms the other but rather to indicate there are situations
where either one might be more appropriate depending on the research question, or the research
scope, or sometimes on the sample size.

Conclusion

Part of the Configurational Comparative Methods, QCA is a relatively young but already robust
methodology, witnessing an explosion of theoretical developments (Beach, 2018; Dul, 2016; Garcia-
Castro & Ariño, 2016; Oană & Schneider, 2018; Rohlfing & Schneider, 2018). It is ideally placed
between the classical quantitative, statistical tradition and the qualitative world, to provide answers
to questions that none of those can provide.

It would perhaps be suitable to end this entry by reiterating that unlike correlation-based analyses,
QCA models causal complexity and has the distinctive features of asymmetrical causation and
equifinality. The solutions in QCA are conjunctural, meaning the outcome happens only at the
intersection of some non-redundant causal conditions.

The causal asymmetry feature is particularly interesting, in that analyzing the causes that make
an outcome happen is something very different from analyzing the causes that lead to the absence
of the outcome. Constructing the truth table for the absence of the outcome follows the same
procedure, but inclusion scores in the negation of the outcome (usually calculated by subtracting
the fuzzy membership scores from 1) are not simply the inverse of the inclusion scores for the
presence of the outcome.

It is arguably less intuitive, but entirely possible for a case to have high inclusion scores in both
the presence and the absence of the outcome, and quite common two inclusion scores do not
sum up exactly to 1. This should be a methodological signal for those researchers who prefer
to measure indicators using a bipolar scale, where the negative pole and the positive pole might
very well be two entirely different fuzzy sets, and empirical cases can have inclusion scores in both.
The comparative methods in general, and the Boolean algebra in particular, unravel a promising
methodological toolkit.
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