
QCA
with R

Adrian Dus!a

A Comprehensive Resource

QCA with R

Adrian Dus,a

QCA with R

A Comprehensive Resource

123

Adrian Dus,a
Romanian Social Data Archive
University of Bucharest
Bucharest, Romania

ISBN 978-3-319-75667-7 ISBN 978-3-319-75668-4 (eBook)
https://doi.org/10.1007/978-3-319-75668-4

Library of Congress Control Number: 2018933067

© Springer International Publishing AG, part of Springer Nature 2019
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the
editors give a warranty, express or implied, with respect to the material contained herein or for any errors
or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims
in published maps and institutional affiliations.

Printed on acid-free paper

This Springer imprint is published by the registered company Springer International Publishing AG part
of Springer Nature.
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://doi.org/10.1007/978-3-319-75668-4

Preamble

The initial idea to write this book emerged in August 2016, with the intention
to update the description of package QCA in R. A lot of things have changed
since the appearance of the previous user guide 5 years ago, when the package
reached version 1.0-0.
Most of the commands are backwards compatible, meaning that all examples
from the previous guide still work with the current version of the package.
There are some minor but important differences; for instance, the function
calibrate() has its default changed from type = "crisp" to type = "fuzzy".
Examples still work with previous versions, but for crisp calibration the ar-
gument type = "crisp" should be explicitly specified. All changes, from all
versions of the package, are specified in the ChangeLog file which is located
in the package’s installation directory (details in chapter 2).
This book is correlated with the release of version 3.3 of the package. There are
many new, cutting-edge features that were not available before: dramatically
improved functionality and of course a graphical user interface to enable R
beginners to use this package using a point and click method. If previously
it was all about the command line, now it is all about the interconnection
between the command line and the graphical user interface.
To advance the presentation from section 2.4, the point of the graphical user
interface is not to replace the command line but to offer a more accessible way
to learn how to use the commands. No graphical user interface, irrespective
of how user friendly, can replace the complete flexibility of the command line.
The variety of available written functions, from the base R and specifically
from package QCA, is beyond the possibilities of any standardized graphical
(therefore confined) user interface.
But there is one thing that makes this user interface special: each and every
mouse click on the various options triggers an immediate construction of the
corresponding command. The real purpose of the graphical user interface is

v

vi Preamble

to demonstrate one possible way to write commands, while there are many
others that users are invited to discover.
The structure of this book is different from the former user guide. It will of
course touch on the same topics and present the same (updated) package, but
instead of organizing chapters on the distinction between crisp, multi-value
and fuzzy sets, a better approach is to organize the book on QCA-related
analyses: calibration, analysis of necessity, analysis of sufficiency, constructing
and minimizing a truth table, etc.
It has grown to be much more than a guide, but it is also not intended as
a complete theoretical material. This is valid for both R-related information
(chapter 1 being a very short introduction) and QCA-related topics. There are
entire books to cover each, and this book cannot replace them all, but instead
it shifts the focus on how to perform QCA using R.
There are dedicated chapters combining theory for all QCA variants (cs, mv
and fs, also extensions) and R, with detailed instructions on how to perform
each of the analyses using both command line and the new graphical user
interface. Readers are nevertheless invited to supplement their knowledge from
other sources, most being introduced in the specific sections.
To say that writing this book has been a challenge is an understatement. It
started as a challenge, but it has developed into something I definitely did not
anticipate. The text in the book is written for an imaginary character with
whom I had many interesting discussions emerging from natural questions.
This character can be both a QCA expert who is interested in using R and
an R expert who is interested in QCA, or perhaps the most common scenario
someone who is neither a QCA nor an R expert. But the questions are the
same:
• What exactly is this? and/or
• How do I do it with R?
Many sections and paragraphs, sometimes down to each word, had to be
rewritten while conversing with this imaginary character and trying to antici-
pate what kind of questions and what kind of answers are expected from this
book. During all this process of describing and explaining, I have often real-
ized that many things that I took for granted were not exactly trivial. This
was practically an invitation to rethink and rewrite the structure of the com-
mands to better answer possible questions, while at the same time increasing
the user experience.
Much like a sculptor who has a concrete idea about the potential of a statue
to be carved out from a stone, the initial book plan gradually adapted to the
new structure to accommodate all ideas that have emerged while writing it.
In a way, the book wrote itself, just as the statue that already exists inside
the stone and the sculptor only removes the excess material to reveal it. I am
extremely pleased to have actively experienced this process.

Preamble vii

Naturally, improving the code in the package implied further and better ex-
planations in the book, while describing the concepts many times involved
rewriting the code, into an energy-draining spiral that lasted for almost an
entire year. On top of the book, and on top of the code, every change meant
even more additional effort to update the graphical user interface. In the
absence of a formal background in programming, writing the package and
especially the graphical user interface was a Herculean effort.
In order to circumvent differences between operating systems, the natural
choice is to open dialogs into the most universal environment, a web page.
Thankfully, using the excellent package shiny made this effort manageable,
although I still had to learn HTML, Javascript and SVG in the process. It has
now reached a rather stable and easy to manage backend, while the front end
is very close to an ideal, combining point and click dialogs with a web-based
command line, all in the same workspace.
The only important thing that it still lacks, and will certainly stay on the
development list for the next versions, is a code editor. There are a number
of very good choices to pick from, but this is something I simply did not have
the time to do for this book. Most likely, the next versions of the package will
be geared towards completing the graphical user interface.
R is a great environment and few people are aware that it can be used to write
books. Not surprisingly, this book was written using R. There are not enough
words to describe the amazing work of Yihui Xie and all the team of engineers
from RStudio, who provide this public service and especially for the packages
knitr , rmarkdown and bookdown that allow this form of HTML, PDF and
ebook publication (among others). It made the writing of this book a whole
lot easier than I had expected, by automatically transforming the markdown
code into LaTeX and finally rendered into an eye-candy PDF version.
In the book, there are many places where theoretical information is exempli-
fied using R commands. These are placed into specific grey boxes, and they
have colours associated (for instance, all functions have red colour, arguments
are green and text input is blue). With the exception of very few commands
that are only illustrative, all of them have an output which is printed imme-
diately below, using a monospaced font.
I am deeply thankful to a select group of people who contributed feedback
while writing the book, and even provided ideas to further improve the package
functionality: to Eva Thomann, Omar Bautista González and Monica S, erban
for the very careful reading of the entire book text, and to Ioana-Elena Oana
and Carsten Schneider for all their work making the package SetMethods
work smoothly with package QCA.
There have been numerous other suggestions, bug reports and feature requests
from too many people to mention here, and I very much appreciate all their
interest.

https://www.rstudio.com

viii Preamble

I would like to dedicate this book to my wife Adriana Rotar, who has been
overly patient with me while writing it. I have taken time out from too many
common activities, and I am grateful beyond words for being so understand-
ing.

Bucharest, Romania Adrian Dus,a
November 2017

Contents

1 R Basics . 1
1.1 Working Directory . 3
1.2 Workspace . 4
1.3 Object Types . 5
1.4 Mathematical and Logical Operations . 8
1.5 Indexing and Subsetting . 10
1.6 Data Coercion . 13
1.7 User Interfaces . 15
1.8 Working with Script Files . 17

2 The QCA Package . 19
2.1 Installing the QCA Package . 19
2.2 Structure . 20
2.3 Command Line Mode . 22

2.3.1 Getting Help . 22
2.3.2 Function Arguments . 23

2.4 The Graphical User Interface (GUI) . 26
2.4.1 Description . 27
2.4.2 Starting the Graphical User Interface 29
2.4.3 Creating an Executable Icon . 30
2.4.4 Command Construction . 32
2.4.5 The Web R Console . 34
2.4.6 Graphics . 36
2.4.7 The Data Editor . 39
2.4.8 Import, Export and Load Data . 41

3 Set Theory . 47
3.1 The Binary System and the Boolean Algebra 48
3.2 Types of Sets . 48

3.2.1 Bivalent Crisp Sets . 49
3.2.2 Multivalent Crisp Sets . 50
3.2.3 Fuzzy Sets . 52

ix

x Contents

3.3 Set Operations . 53
3.3.1 Set Negation . 53
3.3.2 Logical AND . 54
3.3.3 Logical OR . 57

3.4 Complex Operations . 59

4 Calibration . 61
4.1 Calibrating to Crisp Sets . 63
4.2 Calibrating to Fuzzy Sets . 71

4.2.1 Direct Assignment . 72
4.2.2 Direct Method, the “S-Shape” Functions 74
4.2.3 How Does It Works: The Logistic Function 85
4.2.4 Direct Method, the “Bell-Shape” Functions 88
4.2.5 The Indirect Method. 92

4.3 Calibrating Categorical Data . 94

5 Analysis of Necessity . 99
5.1 Conceptual Description . 99
5.2 Inclusion/Consistency . 105
5.3 Coverage/Relevance . 110
5.4 Necessity for Conjunctions and Disjunctions 119
5.5 Exploring Possible Necessity Relations 122

6 Analysis of Sufficiency . 125
6.1 Conceptual Description . 126
6.2 Inclusion/Consistency . 130
6.3 The PRI Score . 134
6.4 Coverage: Raw and Unique . 136

7 The Truth Table . 139
7.1 General Considerations . 139
7.2 Command Line and GUI Dialog . 143
7.3 From Fuzzy Sets to Crisp Truth Tables 146
7.4 Calculating Consistency Scores . 151
7.5 The OUTput Value . 154
7.6 Other Details . 158

8 The Logical Minimization . 159
8.1 Command Line and GUI Dialog . 161
8.2 Conservative (Complex) Solutions . 163
8.3 What Is Explained . 167
8.4 Parsimonious Solutions . 172
8.5 A Note on Complexity . 176
8.6 Types of Counterfactuals . 178
8.7 Intermediate Solutions: SA and ESA . 183
8.8 Theory Evaluation . 194

Contents xi

9 Pseudo-Counterfactual Analysis . 197
9.1 eQMC . 198
9.2 Consistency Cubes . 203

9.2.1 Search Space . 205
9.3 Include vs. Exclude . 207

10 QCA Extensions . 209
10.1 Temporal QCA . 209
10.2 Coincidence Analysis: CNA . 214
10.3 Panel/Clustered Data . 225
10.4 Robustness Tests . 230

11 Less Known Features . 241
11.1 Boolean Expressions . 242
11.2 Negate Expressions . 248
11.3 Factorize Expressions . 250
11.4 More Parameters of Fit . 252
11.5 XY Plots . 255
11.6 Venn Diagrams . 263
11.7 Custom Labels . 271

References . 273

Chapter 1
R Basics

In this chapter, users are introduced to a series of basic concepts in using
R. There are many other, dedicated introductory books for this purpose
(e.g. Verzani 2005; Dalgaard 2008; Zuur et al. 2009, among others). There
is also a dedicated section containing freely available, contributed manuals on
the CRAN (Comprehensive R Archive Network) website.1

The purpose of this chapter is less about providing a complete and exhaustive
guide to R, but rather to help understand at least those basic concepts that
would facilitate using the QCA package.
Chapter 2 will help even further in this aim, especially Sect. 2.4 which shows
how the graphical user interface can be used to interactively construct written
commands, but for the start it is highly recommended that users would at least
understand what R is all about and, perhaps most importantly, how it differs
from the “usual” data analysis software.
Various object types will be briefly presented in Sect. 1.3. Each and every
type of object will become relevant in the subsequent chapters, therefore a
thorough understanding of those types is necessary. There are many other
books that describe those objects, and such content is outside the scope of
this book. Users are invited to supplement their knowledge with external
reading, whenever they feel this brief introduction does not sufficiently cover
the topic.
When first opening an R console, the user is immediately subjected to an
inherent, perceived puzzle: there are no specific menus, and importing a sim-
ple dataset seems like an insurmountable task. When the data is somehow
imported, the most general questions are:
• Where is the data?
• How do we look at the data?

1 https://cran.r-project.org/.

© Springer International Publishing AG, part of Springer Nature 2019
A. Dus,a, QCA with R, https://doi.org/10.1007/978-3-319-75668-4_1

1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-75668-4_1&domain=pdf
https://cran.r-project.org/
https://doi.org/10.1007/978-3-319-75668-4_1

2 1 R Basics

These are natural questions for users who have worked with data analysis
software like SPSS or even Excel, where the data is there to be seen immedi-
ately after opening the file. As users make progress with their R knowledge,
they realize the data doesn’t actually need to be seen. In fact, that is actually
impossible unless the dataset is small enough to fit on the screen. There are
large datasets (thousands of rows and hundreds of columns) that are only
partially displayed, and users usually scroll left and right, as well as up and
down through the dataset. Furthermore, R can open multiple datasets in the
same time, or can create temporary copies of some datasets, this one cannot
possibly “look” at everything.
When large datasets are opened, the human eye cannot possibly observe all
potential problems in a dataset, many of which could remain undetected. For
this purpose, R does a far better job using written commands to interactively
query the data for potential problems.
Specific commands are used to obtain answers to questions such as: Are there
any missing values in my data? If yes, where are they located? Are all values
numeric? Are all values from a specific column in the interval between 0 and
1? Which are the rows where values are larger than a certain threshold? etc.
Even if the dataset is small and fits on the screen, it is still a good practice
advice to address questions like the above using written commands, thus re-
frain from trusting what we usually see on the screen. For example, there are
situations when a certain column is encoded as character, even if all values are
numeric: "1", "5", "3" etc. When printed on the screen, the quotes are not
automatically displayed, therefore users naturally assume the variable is nu-
meric. A better approach is to query R if a certain vector (column) is numeric
or not, as it will be shown in Sect. 1.3.
Before delving deeper into these issues, the simplest possible command for a
first interaction with R is:

1 + 1

the result being:
[1] 2

R reads the command, it inspects it for possible syntax mistakes and if no
errors occur it executes it and prints the result on the screen. This is how an
interpreted language like R works, spending some time to first understanding
what the text command is, then execute it. The big advantage of such an
approach is interactivity, and an increased flexibility.
There are many details that, once understood and mastered, help users get
passed the steep learning curve. Among those details, perhaps some of the
most important are the concepts of (a) working directory, associated with
data input and output, and (b) working space, with the associated types of
objects.

1.1 Working Directory 3

1.1 Working Directory

One of the most challenging tasks for an absolute beginner is to get data in.
Graphical user interfaces from the classical software make it look like a natural
activity by offering a way to navigate through different directories and files
using a mouse. In R, there are two ways to read a certain file: either by using
its name, if it was previously saved in the so called “working directory”, or by
providing the complete path with all directories and subdirectories, including
the file name. More details will be provided in Sect. 2.4.8.
The simplest is to save it in the working directory, which can be found using
this command:

getwd()

[1] "/Users/jsmith/"

There are differences between operating systems, for example in Windows one
might see something like:
[1] "C:/Documents and Settings/jsmith"

A data file can be saved into this default directory, or alternatively the user
can set the working directory to a new location where the file is found:

setwd("D:/data")

These two commands are very useful to select files and directories using com-
mands, and as an alternative one can use the computer’s native file browser
using the command file.choose(). Instead of specifying the complete path
to a certain file, the import command (suppose reading from a CSV file) can
be combined with the file browser:

datafile <- read.csv(file.choose())

This command is a combination of two functions, executed in a specific order.
First, the file browser is activated by the function file.choose(), and once the
user selects a specific CSV file by navigating to a specific directory, the path
to that file is automatically constructed and served to the function read.csv()
which performs the actual data reading.
For the moment, the result of this combination of commands is printed on the
screen, but the usual method is to assign this result to a certain object, as it
will be shown in the next section.

4 1 R Basics

1.2 Workspace

Every object, created or imported, resides in the computer’s memory (RAM).
In R, almost everything is an object: data files, scalars, vectors, matrices, lists,
even functions etc. For instance, creating an object that contains a single value
(a scalar) can be done using the same operator “<-” for the assignment:

scalar <- 3

A new object called scalar was created in the workspace, and it contains the
value 3. The list of all objects currently in the workspace can be seen using
this command:

ls()

[1] "datafile" "scalar"

Some objects are read from the hard drive, while others are created directly in
the R environment. With sufficient RAM available, it really is not a problem
to accommodate (very) many objects, even if some of them are large. It is only
troublesome when the workspace gets polluted with many temporary objects,
that makes finding the important ones more difficult.
Individual objects can be eliminated with:

rm(scalar)

Left unsaved, the workspace is lost when closing R. Apart from exporting
datasets using write.table() (more details in Sect. 2.4.8), individual objects
can also be saved in binary format:

save(datafile, file = "datafile.Rdata")

It is also possible to save the entire workspace in binary format, with all
containing objects:

save.image(file = "workspace.Rdata")

Cleaning up the entire workspace (removing all objects at once) can be done
using this command:

rm(list = ls())

With binary workspace images saved on the hard drive, the opposite command
is to bring them back to R when needed. There is a single function to load
both types of binary files, a single object or an entire workspace, using:

load("workspace.Rdata")

1.3 Object Types 5

1.3 Object Types

A vector is a collection of values of a certain type (called “mode”): numeric,
character, logical etc. It is probably the most common type of object in R,
making an important difference from other software. In many cases, the struc-
ture of the data is restricted to a rectangular shape with cases on rows and
variables on columns but R is more flexible, allowing that type of file but also
all kinds of other structures.
It is not always necessary to structure values in a rectangular shape. Some-
times we might be interested in the values of a (single) simple vector, for any
possible reason including to just play with it and see what happens when
applying different transformation commands.
Vectors are simple, but very powerful structures. Sometimes they contain
values of their own, and some other times they contain indexes referring to
the positions of certain values in other vectors or other objects. The simplest
way to create a vector is to use the c() function:

nvector <- c(1, 3, 5, 7, 9, 11)

The name of the vector (just as the name of any other object) is not important,
in this case chosen as nvector but users are free to experiment with any other.
Invoking the name will print its content on the screen:

nvector

[1] 1 3 5 7 9 11

The same values can be obtained using some other predefined functions, such
as seq() which generates a sequence of every two values between 1 and 9:

seq(1, 11, by = 2)

[1] 1 3 5 7 9 11

As stated before, the most common type of vectors are numeric, logical, char-
acter or factor. The above example is numeric, and creating character vectors
is just as simple:

svector <- c("C", "C", "B", "A", "A")
svector

[1] "C" "C" "B" "A" "A"

Factors are a special type of vectors, that define categorical variables. The
categories are called “levels” in R, and they can be either unordered (nominal
variables) or ordered (ordinal variables).

6 1 R Basics

fvector <- factor(svector)
fvector

[1] C C B A A
Levels: A B C

Unless otherwise specified, the levels are printed in alphabetical order but
irrespective of their arrangement this kind of factor still defines a nominal
variable:

fvector <- factor(svector, levels = c("C", "A", "B"))
fvector

[1] C C B A A
Levels: C A B

To qualify as an ordinal variable, there is an argument called ordered that
accepts a logical value:

ofvector <- factor(svector, ordered = TRUE)
ofvector

[1] C C B A A
Levels: A < B < C

The difference between this object and the previous one is given by the “<”
sign between levels. If not otherwise specified, their order is still ordered al-
phabetically by default, but a preferred order can be specified:

cofvector <- factor(svector, ordered = TRUE,levels = c("B","A","C"))
cofvector

[1] C C B A A
Levels: B < A < C

Matrices are another types of useful objects, having two dimensions: a number
of rows, and a number of columns:

mobject <- matrix(nvector, nrow = 2)
mobject

[,1] [,2] [,3]
[1,] 1 5 9
[2,] 3 7 11

One useful thing about matrices is the fact they can have names for columns,
as well as for rows, and they can be assigned with:

rownames(mobject) <- c("ROW1", "ROW2")
colnames(mobject) <- c("COL1", "COL2", "COL3")
mobject

1.3 Object Types 7

COL1 COL2 COL3
ROW1 1 5 9
ROW2 3 7 11

Perhaps the most important object type, used in almost all data analyses, is
the data frame. Such an object has the same, familiar rectangular shape with
cases on rows and variables on columns. In fact it is a list, with an additional
restriction that all its components have the same length (just like all variables
in a dataset have the same number of cases).

dfobject <- data.frame(A = c("urban", "urban", "rural", "rural"),
B = 12:15, C = 5:8, D = c("1", "2", "3", "4"))

rownames(dfobject) <- paste("C", 1:4, sep = "")
dfobject

A B C D
C1 urban 12 5 1
C2 urban 13 6 2
C3 rural 14 7 3
C4 rural 15 8 4

In other software, only the columns (variables) have names. In R the rows
(cases) can also have names and, especially for QCA related analyses, it makes
sense because each case is well known and studied, as opposed to large N quan-
titative analyses where cases are randomly selected from a larger population.
On a moderately large number of cases, QCA works with aggregate entities
(communities, countries, regions) where the case names are just as important
as the columns, or causal conditions.
One very important thing to notice is the way column D is printed on the
screen. It looks numeric, just as columns B and C, however it is clear from the
command this was written using characters like "1". Returning to the advice
in the preamble of this chapter, we should not trust what we “see” on the
screen. Instead, we can query the structure of the R objects:

str(dfobject$D)

Factor w/ 4 levels "1","2","3","4": 1 2 3 4

It can be seen the column D is not numeric, instead it is a factor due to the
automatic coercion of character to factor in the function data.frame(). The
same kind of query can be performed using the is.something() family:

is.numeric(dfobject$D)

[1] FALSE

This is also a very good way to verify if a seemingly numeric column is in-
deed numeric, and similar queries can be performed using is.character(), or
is.factor(), or is.integer() etc.

8 1 R Basics

1.4 Mathematical and Logical Operations

R is a vectorized language. This makes it not only very powerful, but also
very easy to use. In other programming languages, to add the number 1 to a
numerical vector, the commands have to explicitly iterate through each value
of the vector and increase it with 1, something like:

for (i in 1:6) {
print(nvector[i] + 1)

}

In a vectorized language like R, this kind of iteration is redundant, because R
can work with entire vectors at once:

nvector + 1

[1] 2 4 6 8 10 12

R already knows the object in this mathematical operation is a vector, and
it takes care of the iteration behind the scene. The code is not only easier to
write, but it is also a lot easier to read and understand. This is one of the
many reasons why R became so popular: it is so easy to use that thousands of
non-programmers have been able to quickly use it and contribute with more
packages.
In the above iteration, there is a certain sequence operator “:” which can be
easily overlooked. It generates the sequence of all numbers between 1 and 6:

1:6

[1] 1 2 3 4 5 6

R’s vectorized nature has even more advantages, because mathematical oper-
ations can be applied with two vectors at once:

nvector + 1:2

[1] 2 5 6 9 10 13

The resulting vector seems strange, but reveals another very powerful feature
in R called “recycling”: the values in the smaller vector (of length 2) are
recycled until reaching the length of the longer vector. The values 1 and 2 are
automatically reused three times and added to the next values of the nvector.
Addition is one of the possible mathematical operations in R. There is also
subtraction with “-”, multiplication with “*”, division with “/” and so on.
But there are also logical operations, that in combination with indexing (see
next section) contribute to the dialogue between the user and the data. With
very large datasets that are impossible to print on the screen, users have to
interrogate:

1.4 Mathematical and Logical Operations 9

Is there a value there? Is that value numeric? If yes, is it bigger than the other
number? Is there any value equal to 3? Which is the first one?
These kinds of human interpretable questions can be “translated” into the R
language, via logical operations applied to either entire object or to specific
values.

is.numeric(nvector)

[1] TRUE

The above command asks R if the object nvector is numeric, which means
that all its values are numbers. The result of a logical operation can be a TRUE
is the answer is true, and FALSE if not true. These kinds of operations can also
be applied on each of the containing values:

lvector <- nvector > 3
lvector

[1] FALSE FALSE TRUE TRUE TRUE TRUE

There is one logical result for each value compared with 3, which means the
result of this logical operation is a logical vector of the same length. The same
kind of procedure can be applied for all kinds of human like questions, such
as testing equality with 3:

nvector == 3

[1] FALSE TRUE FALSE FALSE FALSE FALSE

Note the usage of the double equal “==” sign to test equality. This is necessary
because in R, much like in all other programming languages, a single “=” is
used to assign value(s) to an object, just like the “<-” operator.
The result is a logical vector containing 6 values, and now it is possible to ask
which value is equal to 3:

which(nvector == 3)

[1] 2

Combining functions like which() with logical operators like “==” makes the
communication with R possible and easy. Knowing the result of the command
above is a vector, it is now possible to further introduce indexing in the
command to ask even more complex questions like which is the first value
bigger than 5, in this case being found on the fourth position:

which(nvector > 5)[1]

[1] 4

10 1 R Basics

1.5 Indexing and Subsetting

Indexing is a powerful tool to inspect various parts of the data or to perform
data modifications based on certain criteria. Understanding how indexing
works is fundamental for data interrogation, extracting subsets of data,
analysing the structure of the objects and generally it facilitates a commu-
nication method between R and the user.
R is a 1-based language, which means the first element of an object is indicated
with the number 1. By contrast, there are 0-based languages where the first
element is indicated with the number 0, while number 1 refers to the second
element. This is a useful information, especially for users previously exposed
to other software.
Through indexing, it is possible to refer to specific values in different positions
of an object. The second element of the numeric vector is 3, and that can be
seen with:

nvector[2]

[1] 3

Indexing is performed using the square brackets “[”, and the value(s) inside
depend on the number of dimensions an object has. A vector has a single
dimension, therefore a single number is needed to refer to a specific position.
Matrices and data frames have two dimensions (rows and columns), hence
two numbers are needed to indicate a specific cell at the intersection between
a row and a column.

dfobject[3, 2]

[1] 14

In the data frame object above, the value found in the third row of the second
column is 14, and the positions inside the square brackets are separated by a
comma. This is an important detail that defines a syntax rule which, if not
properly used, can generate an error.
The same type of indexing can be performed on matrices:

mobject[2, 3]

[1] 11

An interesting matrix property is the way it is stored in the memory. It looks
like a two dimensional object (just like a data frame), but underneath the
matrix is just a vector that only acts like it has two dimensions. The same
value 11 can be obtained by indexing with the last, sixth value:

1.5 Indexing and Subsetting 11

mobject[6]

[1] 11

For data frames, columns can be selected (and indexed) via the second value
in the square brackets. But the variables (on columns) can also be selected
using the useful “$” operator before the variable name:

dfobject$A

[1] urban urban rural rural
Levels: rural urban

The command above selects a single column A from dfobject, and it is printed
on the screen as a vector. The data.frame() function automatically converts
any character variable to a factor (categorical variable) and prints its levels. To
prevent coercion, there is a logical argument called stringsAsFactors, which
needs to be set as FALSE when creating the data frame.
The vector can be further indexed via the usual method:

dfobject$A[4]

[1] rural
Levels: rural urban

As mentioned, a data frame is a list with an additional constraint that all its
components must have the same length. Lists can also be indexed using the
double square brackets “[[”:

dfobject[[2]]

[1] 12 13 14 15

The result of the above command is a vector which can be further indexed
using a sequence of square brackets, the example below selecting the second
component (second variable column) and inside that, the third value:

dfobject[[2]][3]

[1] 14

One of the other features of the indexing system in R is the negative indexing.
The positive one selects values from certain positions, as seen in the previous
examples. Negative indexing, on the other hand, presents all values except
those specified between the square brackets.

dfobject[[2]][-3]

[1] 12 13 15

12 1 R Basics

There are many other things about indexing, outside the scope of this section,
but there is one more important feature that is worth presenting: the indexes
can be single values, if a single value is to be selected from a certain posi-
tion, but in other circumstances indexes can be vectors themselves (vectors
of indexes).
This is an important observation that prepares other advanced concepts like
subsetting, where vectors of certain positions are used to select certain obser-
vations from a dataset, or to apply certain calculations on some, or based on,
certain observations. Indexing is present in every data manipulation in R, and
it is well worth learning how to properly use it.
Subsetting is similar to indexing, but with the specific objective to obtain
a “subset”, a certain part of a dataset that need to be analyzed to answer
specific research questions. It is sometimes called “filtering”, especially when
applied to the rows of a dataset.
Subsetting can be performed using numerical vectors like in the examples
above (with certain positions to keep or to eliminate), but it can also use
logical vectors where any position that has a TRUE value will be preserved
(or the other way round, any position with a value of FALSE is eliminated).
nvector

[1] 1 3 5 7 9 11

using logical vectors (all values greater than 3)
nvector[lvector]

[1] 5 7 9 11

using numerical positions
npos <- which(lvector)
npos

[1] 3 4 5 6

now the same result with
nvector[npos]

[1] 5 7 9 11

It is especially useful for subsetting data frames, on both rows and columns.
For columns it selects among their names (possibly with a specific pattern),
and on rows it creates a subset of cases, in the example below those where
the column C is greater than 6:

dfobject[dfobject$C > 6,]

A B C D
C3 rural 14 7 3
C4 rural 15 8 4

1.6 Data Coercion 13

Note how the column C was specified in conjunction with the name of the
object and separated by a “$” sign, but otherwise it is possible to refer directly
at the column name using the function with(), in this command adding the
values from the columns B and C:

with(dfobject, B + C)

[1] 17 19 21 23

R has a base function called subset(), that can be used on both vectors, and
rectangular objects like matrices and data frames. For dataframe, a possible
command is:

subset(dfobject, B > 13, select = c(A, C, D))

A C D
C3 rural 7 3
C4 rural 8 4

The command should be self explanatory, obtaining a subset of the dfobject
keeping all rows where the column B has a value greater than 13, and from
the columns selecting A, C and D.

1.6 Data Coercion

The function is.numeric() verifies all values in a vector, but unlike most of
the logical operations in the previous section, it results into a single value
indicating if the entire object is numeric or not.
This is possible because of a particular feature in R, that all values in a certain
vector have to be of the same “mode”. If all values in a vector are numbers,
such as those from nvector, the object is called numeric. But if a single value
among all numbers is a character, the entire vector is represented as character.
Many people don’t realize that numbers are characters themselves, and most
importantly the character "1" can be something different from the number
1 (especially if coerced to a factor). This conversion may happen if, by any
chance, a true character is added to a numeric vector, or it replaces one of
the values in the vector. At that moment, the entire vector which previously
was numeric, is transformed (coerced) to a character type.
All values in a vector have to be of the same type. One single value of a
different type is sufficient to coerce the entire vector to the other type, but
the coercion goes only one way: a single number in a character vector does
not coerce that into numeric. That happens because all numbers can act like
characters, while not all characters can act as numbers.

14 1 R Basics

cnvector <- c(1, 2, 3, "a")
cnvector

[1] "1" "2" "3" "a"

The object cnvector contains three numbers and one character, but due to
the presence of the character, all numbers are now presented as characters.
Removing the character leaves the vector with the same character type, even
though all values are in fact numbers:

cnvector <- cnvector[-4]
cnvector

[1] "1" "2" "3"

Converting from one type to another is done using the “as.” family of func-
tions, in this case with:

cnvector <- as.numeric(cnvector)
cnvector

[1] 1 2 3

All this demonstration reveals one of the most common situations in data
analysis, especially for those users who want to “see” the data. Some objects
are not always what we think they are, simply because we see them printed
on the screen:

dfobject$D <- as.character(dfobject$D)
dfobject

A B C D
C1 urban 12 5 1
C2 urban 13 6 2
C3 rural 14 7 3
C4 rural 15 8 4

At a first sight, the fourth variable D seems to contain numbers just like B
and C. However they only appears to be numbers, while in reality column D
contains their character representation (e.g. "1", "2", "3" and "4"). This is an
important observation for two reasons, with cascading effects over the next
chapters:
• if at any data analysis stage, we need to perform mathematical operations

on a vector we think it is numeric but in reality it is not, an (unexpected)
error will be thrown and most novice users remain puzzled how did that
error appeared “out of nowhere”

• as it was shown, assuming that something it is of a certain type just because
we “see” it printed on the screen does not necessarily make it of a that type;
instead, it is by far a better idea to always check if a variable is indeed what
we think it is

1.7 User Interfaces 15

A special type of coercion happens between the logical and numerical vectors.
In many languages, including R, logical vectors are treated as numerical binary
vectors with two values: 0 as a replacement of FALSE, and 1 as a replacement
of TRUE.

lvector is the logical vector created in the previous section
sum(lvector)

[1] 4

The reverse is also valid, meaning a numerical vector can also be interpreted
as logical, where 0 means FALSE, any other number means TRUE, and the
exclamation sign ! negates the entire vector:

!c(0, 2, 1)

[1] TRUE FALSE FALSE

1.7 User Interfaces

There are various ways to work with R, and the starting window presented in
Fig. 1.1 is deceptively simple.

Fig. 1.1 The starting R window under MacOS

16 1 R Basics

In fact, it is so basic that many first time users are puzzled: no fancy menus,
and only a handful of buttons that are completely unrelated to data analysis.
The starting window looks different in Windows and Linux, but the overall
appearance is the same: a console, where users are expected to type commands
in order to get things done.
There are very good reasons for which the base R window looks so simple.
The best explanation is that a graphical user interface is completely unable
to replace a command line. Writing efficient commands is an art, as there
are literally thousands of different ways to obtain a certain result, via an in-
finitely large number of possible combinations of commands. Some are simple,
some look complicated but are extremely efficient, it all depends on the user’s
knowledge.
In contrast, a graphical user interface is necessarily restricting to exactly one
possible way (among thousands) of obtaining a result. For simple activities
such as inspecting the data, or basic data manipulations (creating or modi-
fying variables etc.) it is relatively easy to provide a graphical user interface.
But unless the work is highly standardized with exactly similar input and
output, each research problem is unique and requires a custom solution.
Customizing solutions using written commands is a lot easier than using point
and click graphical interfaces. In some cases, the interface is simply unable
to answer very specific problems, because it has not been designed for those
problems in the first place. This is the very reason for which, although R exists
for almost three decades, there are very few graphical user interfaces that are
capable of a smooth interaction with the base R environment.
On the other hand, especially for those who have never used R before, the
simple command line can be a deterrent. The newest interface that is currently
most fashionable and widely recognized as user friendly is RStudio, presented
in Fig. 1.2. It depends on a valid R installation, and it is built in a local
web environment which solves the problem of differences between different
operating systems.
Most importantly, RStudio manages to bring into a single interface not only
the command console, but also an object browser, as well as a package installer,
a plot window etc. It is more or less the closest possible user interface that
balances both the expectation of a point and click user with the inherently
rich set of possibilities from the R environment.
One of the most useful features of the RStudio is the History tab, where all
previous commands in the Console are stored and can be inspected later. It is
not shown in the figure, but it also has a modern syntax editor with a bracket
matching, different colors to highlite functions, comments and operators etc.
This is extremely useful, especially for the possibility to quickly select the
commands to be tested and immediately sent to the console. Although having
a much better user experience, RStudio is also a command centric interface,
for the same reasons stated above.

1.8 Working with Script Files 17

Fig. 1.2 The RStudio user interface

1.8 Working with Script Files

The upper left part of the RStudio window in Fig. 1.2 above is a text file
with an extension “.R”, where specific commands can be written and saved
for later references. Commands can be selected and run in the R environment
from the lower left part, either individually (specific rows) or the entire file
with all commands at once.
These kinds of scripts, containing written commands, are the heart of the R
environment. Not only because written commands are infinitely more flexi-
ble than a graphical user interface with precise boundaries, but also because
scripts allow one of the most appreciated features of scientific research: repli-
cability.
It is extremely difficult (if not impossible) to obtain exactly the same results
using a graphical user interface, unless the exact sequence of clicks, selections
and various other settings are somehow recorded, assuming the same input
data is used. Users who click though a graphical dialog rarely think to doc-
ument the exact sequence of operations, and simply reports results as if all
other users would know what the sequence is.

18 1 R Basics

At the other end, commands can be saved in text files, so that anyone else
could follow (simply by copy/paste) the commands and obtain exactly the
same results. And syntax files have an even more important role for the user:
they can also serve as documentation vehicles for particular ideas contained
in different commands.
Any line which starts with a hash tag # is considered a comment (as readers
might have already noticed in the previous examples), and anything on that
line is not evaluated therefore it can contain natural language about what the
commands do. It is a good practice advice to document as much as possible
the script files, especially when beginning to use R. Not only it makes it easier
for a different reader to understand the commands, but many times it makes
it easier for the same user to understand the code, some times later.
Just like data files (or R binary data files that usually have the extension
“.Rdata”), syntax files can reside in a working directory, usually having the
extension “.R” but none of these file extensions are mandatory. The commands
inside can be run line by line, or in several batches of lines (using either
RStudio or by simply copy and paste to the R console), but otherwise it is
also possible to run all commands from the entire script file (possibly starting
by reading the dataset, manipulating it, and finally obtaining the end results)
using one single command in R:
source("path/to/script/file.R")

Such script files are easy to exchange with peers and colleagues, and they
work just the same under any operating system, making R a highly attractive
and interoperable working environment for teams of people all over the world.
The new shinyapps,2 as well as the flexboards and probably even more spec-
tacular R Notebooks, although requiring a more advanced R knowledge, are
even more attractive ways of working with international teams by exchanging
not only the script files but also their immediate, visible results.
RStudio has many more functionalities, for instance the package bookdown
can be used to write articles and even books. This very book was written
using this package.

2 https://www.shinyapps.io/.

https://www.shinyapps.io/

Chapter 2
The QCA Package

In the first chapter, we have briefly covered some of the basics in using R.
This chapter presents the structure of the QCA package with its associated
functions, complementing their explanation with an overview of the associated
graphical user interface.
Many functions will be thoroughly explained in dedicated chapters (for exam-
ple how to construct a truth table, or how to calculate parameters of fit), while
this chapter will only cover the general usage, valid for all functions. Since the
user interface in this package is novel, most sections are recommended for all
users, beginners and advanced alike.
Some of the sections from this chapter are highly specific and very technical
about the package itself, but have very little to do with either R in general
or QCA in particular. Readers need not insist too much on those sections
(for instance Sect. 2.2 about the package’s structure or Sect. 2.4.3 about how
to create an executable icon to start the graphical user interface), they are
provided just in case it might prove to be useful for advanced users.

2.1 Installing the QCA Package

The easiest way to install the QCA package is to start R and follow the
platform specific menus to install packages from CRAN.
• For MacOS, the menu is: Packages & Data/Package Installer. In the

resulting window, there is a button called ‘Get List’ to get all the binaries
from CRAN, then select the QCA package also click on ‘Install Dependen-
cies’.

• For Windows, the relevant menu is: Packages/Install package(s)… and
a list of CRAN mirror servers will appear (chose the one closest to your
location), after which the list of packages is presented.

© Springer International Publishing AG, part of Springer Nature 2019
A. Dus,a, QCA with R, https://doi.org/10.1007/978-3-319-75668-4_2

19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-75668-4_2&domain=pdf
https://doi.org/10.1007/978-3-319-75668-4_2

20 2 The QCA Package

• On Linux, probably one of the easiest ways is to install from the source
package(s). Simply download them from CRAN, open a Terminal window
and type: R CMD INSTALL path/to/the/source/package.tar.gz (this method
works on all platforms, provided that all the necessary build tools are in-
stalled). For certain Linux distributions like Ubuntu, there are package bi-
naries already produced and maintained on CRAN,1 and users can install
them via the usual package management software.

Apart from the obvious point and click method using R’s graphical user inter-
face, there is also a cross-platform method from within R, where users have
to type:

install.packages("QCA", dependencies = TRUE)

There is also a package installer within the RStudio user interface (select the
Packages tab, then click the ‘Install’ button), which is more convenient to use,
but from my own experience it is always better to install packages from the
base R, and then use them via any other user interface.
Once installed, the package needs to be loaded before the functions inside can
be used. For all chapters and sections to follow, this book assumes the user
has already run this mandatory command:

library(QCA)

2.2 Structure

The packageQCA is organized in a series of directories and files, some of them
containing the actual code (functions) while others containing their associated
documentation and help files.
A good practice advice is to read the ChangeLog file upon each package install
or update, because functions can slightly be changed or patched, or arguments
can change their default values and previous code that used to work in some
way would give different results on the next run (detailed explanations on how
functions work will be give at Sect. 2.3 Command line mode).
One possible way to access the ChangeLog file (the text file mentioning each
modification and addition that happens from one version to another) is to read
it directly in the QCA webpage2 on CRAN, where a link to the ChangeLog
file is automatically provided by the build system.

1 https://cran.r-project.org/bin/linux/ubuntu/README.html.
2 https://cran.r-project.org/web/packages/QCA/index.html.

https://cran.r-project.org/bin/linux/ubuntu/README.html
https://cran.r-project.org/web/packages/QCA/index.html

2.2 Structure 21

On the local computer, the ChangeLog file is located in the root of the pack-
age’s installation directory, which usually is:
• on Windows, in Program Files/R/R-3.3.3/library/QCA
• on MacOS, in /Users/your_username/Library/R/3.3/library/QCA/
• on Linux, in /home/your_username/R/architecture/version

Each of these paths may change depending of the version of R (for exam-
ple 3.3.3 at the time of this writing) or depending on the Linux distribution
(via the architecture string), whether on 32 bit or 64 bit etc.
Users are allowed to define a custom library installation directory, which would
help not only to circumvent the version-dependent path, but also to avoid re-
installing all packages upon the release of a new version of R. As a bonus, it
also helps working with multiple version of R in the same time (this is some-
times important for developers who want to test functionality for different
versions).
Defining a custom installation directory is platform dependent (for example
Linux users have to export the paths), therefore readers are encouraged to
read more specific details on the ‘R Installation and Admin manual’ or via
the help(Startup) command in R. Windows users may also want to take a look
on the more automatic batchfiles package3 written by Gabor Grothendieck.
Once locating the installation directory of the QCA package, the actual con-
tent of the individual files (R code and its documentation) is not directly
readable because the package is installed as a binary. However, the content is
available in the source package, downloadable from the CRAN server.
Apart from the ChangeLog file, users may also be interested in the alternative
help system which is located in the staticdocs subdirectory.
One thing that is likely important for all users is the so called “namespace”
of the QCA package. R is a contributed software, with thousands of develop-
ers who constantly upload their work to CRAN. It is very likely that two or
more developers to write functions using the same name (sometimes for com-
pletely different purposes), therefore R needed a way to avoid function name
conflicts. The solution was to contain all function names in each package into
a namespace, which protects the usage of some function names to a specific
package.
Some other times, competing packages use the very same name for exactly the
same purposes, and conflicts cannot be avoided. Users should be aware that
precedence has the last loaded namespace, but to avoid such situations the
best scenario is to refrain from using competing packages at the same time,
or at least not in the same R environment. Starting R can be done in various
ways, for example in the dedicated installed R user interface and also in the
Terminal window.

3 https://code.google.com/archive/p/batchfiles/.

https://code.google.com/archive/p/batchfiles/

22 2 The QCA Package

2.3 Command Line Mode

R is essentially a CLI—command line interface, which means it can be accessed
via commands typed in the console (either in the R’s basic graphical user
interface, or in the Terminal window). The first chapter explained the basics
of the R commands, and the purpose of this section is to take the user one
step further. Once properly understood, things will prove to be deceptively
simple, but otherwise they are seemingly complex, especially for beginners.
Both the command line functions, and the user interface in the QCA package
are developed with the intention to make things as easy as possible for any
user. The design of the functions, with their formal arguments, have a twofold
purpose: to perform the operations for Qualitative Comparative Analysis, and
to involve an absolute minimal effort to use them.
Care must be taken, however, to make sure the right input is fed for the right
arguments, otherwise the functions will stop with descriptive error messages.
The structure of a written command in the QCA package is determined, and
closely follows the structure of any basic R command: it has arguments, default
values, and relations between various values of associated argument. What is
different and better, on top of the basic level of functionality, is an utmost
care to capture all possible error situations and create clear and helpful error
messages.
The R messages can sometimes be cryptical for beginners. They are very
clear for advanced users, but for those who are only beginning to learn R
they seem incomprehensible. Since the QCA package assumes only a minimal
R knowledge, it is extremely important to provide highly descriptive error
messages that allow users of any level to carry on their analysis. Achieving this
level of information involved a huge effort to capture all possible situations
where users might have difficulties, and return that kind of message which
helps users to quickly understand the nature of the problem.

2.3.1 Getting Help

The arguments are generally self explanatory, and the functions have associ-
ated help files to provide more details where needed. To access such a help
file, the easiest is to type a question mark “?” sign in front of the function
name. For example, to see the help file of the parameters of fit function pof(),
the command is simply:

?pof

2.3 Command Line Mode 23

As previously indicated, this command assumes the packageQCA has already
been loaded, so its namespace and functions are available to the user level.
Another possibility to browse the help files is to access the Index of all func-
tions and datasets in the package (on the bottom of every help page there is a
link to that Index), and select the function for which the help is needed. The
very same set of help files is also available as a mini-series of static web pages
built with the staticdocs package. Those pages are found in the staticdocs
directory from the root installation directory of the package, or (as it will be
shown in Sect. 2.4) as a dedicated button in the graphical user interface.
The information from these alternative help files are identical, with the added
bonus for the web pages that they also present the result of the commands
(especially useful in the case of plots or Venn diagrams).

2.3.2 Function Arguments

The structure of a function consists of one command (the name of the function)
and a series of formal arguments that need to be specified by the user in order
to obtain a result, or a specific type of result.
Let us examine one of the most simple functions in the package, findTh() to
find calibration threshold(s) for a numerical causal condition, in the absence of
any theory about how that condition should be calibrated (more information
about calibration in Chap. 4).
The structure of this function is presented below:

findTh(x, n = 1, hclustm = "complete", distm = "euclidean", ...)

It has four formal arguments (x, n, hclustm and distm), plus the possibility
for additional informal arguments via the “...” operator (mainly for histor-
ical reasons, to ensure backwards compatibility with the code in the former
versions of the package).
As it can be seen, some of the arguments have already defined values (called
“default”), as in the case of the argument n, the number of thresholds to find,
which is pre-set at the value 1. On the other hand, the argument x, that
contains the numerical input, doesn’t have any default value because it differs
from case to case and from user to user.
The main difference between these two kinds of arguments is that x needs
to be specified (without data, the function does not have any input to find
thresholds for), while the argument n is optional (if the user doesn’t specify
anything, the function will use its default value of 1).

24 2 The QCA Package

To demonstrate, we first need some data, for example this vector containing
hypothetical country GDP values:

gdp <- c(460, 500, 900, 2000, 2100, 2400, 15000, 16000, 20000)

Having created the object gdp, these two commands give identical results:

findTh(gdp)

[1] 8700

and

findTh(gdp, n = 1)

[1] 8700

This is a fundamental information on how functions generally work in R and it
must always be remembered because, many times, these default arguments are
“at work” even if users don’t specify them explicitly. Perhaps more important,
sometimes arguments are “at work” without the user’s knowledge, a highly
important incentive to carefully read the help files and make sure that all
arguments have their proper values or settings.
Modifying the number of thresholds (more details in Chap. 4) will of course
change the result:

findTh(gdp, n = 2)

[1] 8700 18000

Another important aspect regarding the written commands is the logical rela-
tionship between various arguments. Some of these arguments depend on the
values of other arguments from the same command.
As an example, as it will be further explained in Sect. 4.2.2, let us examine
the calibrate() function which has these formal arguments:

calibrate(x, type = "fuzzy", thresholds = NA, logistic = TRUE,
idm = 0.95, ecdf = FALSE, below = 1, above = 1, ...)

The argument logistic depends on the fuzzy type of calibration: it would not
make any sense to ask the function for a logistic function of a crisp type cali-
bration. If the argument type is modified to "crisp", then argument logistic
will be ignored irrespective of its value.
The same dependency relationship can be observed between the arguments
logistic and idm, where the later (which stands for the inclusion degree of
membership) makes sense only for those cases where the logistical function
is used for calibration, and since the logistic function depends on the fuzzy
type of calibration it means the argument idm is logically associated with a

2.3 Command Line Mode 25

chain of dependencies starting from argument type. If either or both of those
arguments are changed from their default values, the argument idm will be
ignored.
This kind of behavior might be difficult to conceptualize on a written com-
mand, but is absolutely evident in the graphical user interface for the calibra-
tion menu (details in Chap. 4), where not only that arguments are ignored,
but they actually disappear from the dialog when different previous arguments
options have been selected. When choosing the crisp type of calibration the
dialog presents only the options (arguments) for the crisp version, and when
choosing the fuzzy type of calibration the options from the crisp version dis-
appear and those for the fuzzy type appear instead. The same thing happens
in the command line, it is just more obvious in the graphical user interface.
Perhaps one final thing that is worth noting, in the command line description
for the package QCA, is a feature that simplifies users’ experience to a max-
imal extent. Many times, especially in QCA applications, users are required
to specify which causal conditions are used for a truth table, or what kind of
directional expectations are used to further enhance the solution space.
All of those situations, as well as many others, involve specifying a character
vector and the causal conditions is an easy example. The normal accepted way
to deal with character vectors, in R, is to use quotes for each value, something
like: c("ONE", "TWO", "THREE").
But beginners often forget to add the c() function to construct the vector, or
sometimes they might forget a quote somewhere, especially when the condi-
tions’ names are longer. This kind of error can only be captured by the base
R, with the associated, seemingly “cryptical” messages. To help prevent these
situations, and enhance the user experience, the QCA package has automatic
ways to understand and interpret a single character string which, many times,
can be used instead: "ONE, TWO, THREE".
Such a string is easy to type, and it doesn’t involve much attention on behalf of
the user. The package automatically recognizes this string as a character vec-
tor (because it contains multiple commas inside), and it splits the string into
several character substring corresponding to the initial values in the “normal”
specification.
This is useful for two main reasons. First, it is now possible to specify variously
complex disjunctive expressions (understood as sum of products) to calculate
parameters of fit, something like "natpride + GEOCON => PROTEST".
But as a more convincing example, specifying directional expectations (see
Sect. 8.7) can sometimes prove to be tricky. These expectations are most of
the times specified in the form of c(1, 0, 0, 1, 1), but there are situations
where users don’t have any expectation at all (a “don’t care”), and the usual
way to specify this situation is to use the character "-".

26 2 The QCA Package

An error will appear if typing c(1, 0, -, 1, 1), where the correct way to
specify this vector is c(1, 0, "-", 1, 1), and this is a very common situation
for many first time users. To circumvent this possibility, the QCA package
can read the more simple string "1, 0, -, 1, 1" which works just as well for
both advanced and beginners because it is entirely enclosed between quotes.
As an added bonus, it is easier to write and decreases the likelihood to make
a mistake, overall enhancing users’ experience.

2.4 The Graphical User Interface (GUI)

Working in a command line driven environment is both a blessing and a curse.
With most of the other software offering intuitive menus and dialogs, users
have a natural expectation for a similar interface when first opening R. It can
actually be discouraging, because a command line is completely outside most
of the users’ experience.
But there are good reasons for which R is designed the way it is, and those
programmers who started to build a graphical user interface know how very
difficult a task this is, highlighted by the fact that no universally accepted
graphical user interface was designed since the first release of R, over 20 years
ago. There have been many attempts to design a GUI (in a random order, for
exemplification: Deducer, Rcmdr, RStudio, JGR, RKWard, Rattle, Tinn-R),
most of them presented by Valero-Mora and Ledesma (2012).
What is common to all these efforts is the attempt to accommodate R specific
features (workspace, packages, console, object types etc.) in a graphical user
interface which is normally designed for a different kind of functionality. This
is especially evident in the data editor, a spreadsheet like feature that all user
interfaces present: as any spreadsheet, it has a rectangular shape with cases
on rows and variables on columns and that is the most expected shape when
users want to view or edit their data.
The trouble is, R has many more types of data. There are scalars, vectors,
matrices, arrays and lists to name the most common, and implementing a
viewer/editor for all of those objects, as simple as it might seem, it is in fact
close to impossible. Restricting the data editor to datasets only is even worse,
fueling many users’ expectations that data means a dataset when in fact data
can have many other shapes.
And that is only a fraction of the entire complexity. R is constructed as a
package centered software, where in addition to a core set of packages there are
potentially thousands of other contributed packages from all users. There are
also multiple environments, sessions, graphical devices, it would be practically
impossible to accommodate everything into a single system of menus, adding
up to the difficulty of designing a multi-purpose user interface.

2.4 The Graphical User Interface (GUI) 27

2.4.1 Description

The graphical user interface in the QCA package is not different from any
other attempt. It is strictly dataset oriented, an understandable fact since it
is not designed as a general R graphical user interface but specific for QCA
purposes, where input data usually has a rectangular shape.
To avoid duplicating efforts and make the users’ experience as smooth as
possible, it was extremely important from the very beginning to create a single
version for all operating systems, without any additional software necessary
to be installed except for the base R.
One highly appreciated user interface that accomplishes these goals is the R
Commander (Fox 2005), a point and click interface that can be installed as a
regular R package and opened from within R. No other software is necessary,
and it can be opened (just like R) in any operating system because it was
written in the Tcl/Tk language.
This is one of the best user interfaces for R, and the structure of the user
interface in the QCA package is similar to the one from R Commander (it
has menus and separate dialogs), however its internal functionality is closer
to the other highly appreciated user interface, RStudio.
Much like RStudio, the QCA graphical user interface is constructed in a web-
page using the powerful shiny package (RStudio, Inc 2013) with additional
Javascript custom code on top. Perhaps the best description of the QCA user
interface is the effort to achieve Rcmdr functionality using shiny and RStu-
dio technology, combining the best features from both.
A webpage is likely to become the most widely used environment to exchange
and visualize data, partial results or even complete reports or presentations. It
is obvious that many of the “traditional” software have siblings in cloud based
environment (Google Docs for example), and it is actually possible to fully
use an entire software in a webpage, through some sort of a virtual machine.
The team from RStudio is actually leading the way to building all sorts of
webpage based useful tools, for example Shiny dashboards and html widgets.
There is also another collaboration tool with a high potential to produce
a significant impact in the academic world, named R Notebooks: not only
it makes the code exchange possible, but thanks to a careful design it also
exchanges the output of the code, all in a single HTML document that can
be literally opened everywhere, irrespective of having R installed.
It seems that cloud and webpages, with flavors of HTML and Javascript inside,
are starting to become a new kind of collaboration environment that R is
happy to work with, either directly communicating via the package shiny or
building snippet documents like R Notebooks.

28 2 The QCA Package

These are precisely the reasons for which the QCA graphical user interface
has been designed to be opened in a webpage: it is a modern approach, and
with so many new tools appearing every day it has good prospects to still be
valid many years from now.
The purpose of this chapter is less to offer an exhaustive presentation of the
entire user interface, some menus and dialogs will be presented in specialized
chapters. At this point, it is probably more important to introduce the most
important features, especially how to open it and how to make the best out
of the interface. Although it allows most of the base R features through the
web based R console (see Sect. 2.4.5), this is not a general purpose R graphical
user interface, but a QCA specific one.
Once opened, it looks like any regular software installed on the local computer
with menus, and each menu opens a dialog, where users click through various
options and set various parameters then run the respective command.
The only difference, because the interface is opened in a webpage, is that
dialogs are not separate windows but are created inside the webpage environ-
ment: if that is closed, all open dialogs will be closed.
Otherwise, there are multiple advantages building the user interface in a web-
page. To begin with, the user interface looks exactly the same irrespective of
the operating system: since the HTML and Javascript languages are standard
and cross-platform, a webpage should look identical everywhere.
But there are even more advantages. Unlike traditional point and click soft-
ware where dialogs are static, building these dialogs into a webpage makes
possible to use all HTML and Javascript features that are normally present
into a web environment: reactivity, mouse-over events, click events etc. The
dialogs themselves change, function of specific options being clicked.
This will be especially evident in Chap. 4, where the calibration dialog con-
tains a plot region where users can actually see the distribution of raw against
the calibrated values, function of specific calibration options. This is helpful
because it eliminates an additional step of verifying the result of the calibra-
tion after the calibration process: instead, it shows how the calibration looks
like before the command will be sent to R.
Some dialogs can be resized to accommodate complex information, and all
content will automatically be resized at the new width and height of the
dialog. Such examples will be presented for example in Sect. 11.6, where Venn
diagrams for more than 4 or 5 sets become too complex for a smaller plot
region, or even for an XY plot dialog with very many points to plot.

2.4 The Graphical User Interface (GUI) 29

2.4.2 Starting the Graphical User Interface

The QCA graphical user interface is essentially a shiny app. An “app” is a
generic term for any application project done with the package shiny, which
provides the possibility to build interactive user interfaces that help under-
stand the data structure and clarifies the nature of the problem to be solved.
There are thousands of potential applications built with Shiny, either on local
machines, or personal servers or even published and shared on the RStudio
servers (https://www.shinyapps.io/).
While the RStudio family of applications open up an entire world of possibil-
ities, like the interchange format of an R Notebook discussed in the previous
section, a Shiny app does even more: it allows the user to interact with the
R system using an easy to use, intuitive interface. A Shiny app need not be
limited to a specific example, it can be customized to accepts various inputs
which are fed to R by the interface, making the user’s life as easy as possible.
Shiny can do this kind of mediation between the user and R, because it has
a communication engine that sends the commands to R, which responds to
the HTML environment and the answer is displayed on the screen. Users
don’t even have to know R to use these kinds of interfaces, they only need
to click, drag and generally do whatever the web-based app offers within.
This communication was possible because R provides a native web server,
initially designed to display help pages for the various functions in various
packages. Shiny built on this capability, and uses the R’s internal web server
as a communication tool between the webpage and R.
Any such Shiny app can be opened using a function in the shiny package
called runApp(), which takes as its first argument the path to the directory
where the app resides, and has different other parameters to set the host and
the port where the web server should listen on. Users don’t need to know
all this stuff, because the function automatically assigns a local host and a
random port, unless specifically stated otherwise.
Which brings the attention over the important aspect of what a web “server”
is. Most naive users think that a server is something which runs on the internet,
in a public or a private mode. And this is true, but few users are aware of the
fact that web servers can be run on the local computer, and the most common
web address for a local web server is 127.0.0.1 which is the automatic default
for the shiny package. The port number follows after a colon, making the
web address of a Shiny app look similar to something like 127.0.0.1:6479.
The QCA package offers a convenient wrapper function for all these details,
and opening up the graphical user interface can be simply achieved with:

runGUI()

https://www.shinyapps.io/

30 2 The QCA Package

2.4.3 Creating an Executable Icon

While the user interface can be easily started from the R console after loading
the QCA package, this approach suffers from a single drawback: the user’s
experience is now restricted to the web user interface for the entire session.
From the very moment the web application has been initiated, R will not do
anything else but to listen for the commands generated by the point and click
menus. It is therefore impossible to resume working at the R console while
the user interface is active, because R accepts no other commands while in
the communication state with the web server. It is a choice of either the web
user interface, or the normal R console, but not both in the same time.
Fortunately, this can be circumvented thanks to R’s internal operation proce-
dures. As a command line interface software, R is primarily programmed to be
started from a terminal console, usually from any kind of a terminal window.
In the Unix environments (both Linux and MacOS), a terminal window is so
natural that it doesn’t need further explanation, and Windows users might be
familiar with the DOS black window, and something similar can be started
by entering the command cmd to the Start/Run menu.
In any of these terminal windows, provided that R has been installed with
administrator privileges and the path to the binary executables have been
added to the system paths, R can be opened by simply typing the command
R (if installed to set its executable paths, or providing the complete path to
the R executable file). The built-in R user interface/console is nothing but a
shortcut to such a procedure, plus access to more advanced graphical devices.
Users can have two R sessions opened, one in the normal R console, and the
other started in the terminal. Both can load the same package QCA, and one
of them can be used to open the web user interface. While one of the sessions
will be busy maintaining the web server communication, the other session can
be used for any other R related task.
This kind of dual R usage can be further simplified by creating an executable
file (icon) to start the terminal based R session and automatically open the
web user interface, through a simple double click procedure. For the Linux
users this is rather straightforward, involving the creation of a shell script
and modifying its executable properties via the command chmod. While this is
natural for the Linux environment, the rest of this section will provide detailed
instructions for Windows and MacOS users.
In the Windows environment, an executable file can easily be obtained by
creating a file having the extension “.bat”. This can be achieved by opening
any text editor and save an empty file having this extension. The content of
this file should be the following:

2.4 The Graphical User Interface (GUI) 31

CLS

TITLE QCA Qualitative Comparative Analysis

C:/PROGRA~1/R/R-3.3.3/bin/R.exe --slave --no-restore -e ˆ
"setwd('D:/'); QCA::runGUI()"

The first two lines are harmless, cleaning up everything in the terminal window
(if already opened) and setting a title. The third and more complex command
requires some explanation because it involves a combination of commands, all
related to each other.
It starts by specifying the path to the R executable, in this example referring
to R version 3.3.3 but users should modify according to the installed version.
The C:/PROGRA~1 part simply refers to the C: drive and the shortcut to the
Program Files directory (where usually all programs are installed), and the
rest up to the /bin/R.exe completes the path to the R executable file, to
start R.
The --slave part suppresses the prompts, commands, and R’s starting in-
formation, while the --no-restore specifies that none of the objects created
through this R session will be saved for later usage.
The -e part indicates to R that a series of commands are to be executed
immediately after R has been started, and those commands are found between
the double quotes. The ˆ part signals that a long command is continued on
the next line.
While the sequence C:/PROGRA~1/R/R-3.3.3/bin/R.exe --slave --no-
restore -e are terminal specific commands, the sequence setwd('D:/');
QCA::runGUI() is a series of two R commands, separated by a semicolon.
Specifically, setwd('D:/') sets the working directory to the D:/ drive (users
might want to change that to a preferred directory of their own, see Sect. 2.4.8),
while QCA::runGUI() indicates running the runGUI() function from the package
QCA (the :: part is an R feature, allowing the users to run a function from a
specific package without having to load that package). The runGUI() function
is responsible with the creation of the web page containing the user interface.
And that should be enough: with a bit of care to correctly specify the path
to the executable R file, and setting the working directory to a place where
the user has read and write permissions, saving this text file with a “.bat”
extension will allow opening up the web user interface by a simple double-
click on that file.
For MacOS users, the procedure is just as simple, although not immediately
obvious because, unlike the Windows environment where a “.bat” file is au-
tomatically recognized as an executable file, in the Unix environment a file
becomes executable only after specifically changing its properties.

32 2 The QCA Package

The MacOS executable icon is also a text file, having a slightly longer exten-
sion called “.command”, and it contains the following:

R --slave --no-restore -e "setwd('/Users/jsmith/'); QCA::runGUI()"

It is basically the same command as in the Windows environment, only it
doesn’t need the complete path to the R executable because under MacOS
the R installation process automatically sets these paths in the system.
The /Users/jsmith/ is the home directory of a hypothetical user called jsmith,
and this is also something users want to customise.
Having this text file created, and named for instance QCA.command (assum-
ing it was created on the Desktop, which is a directory found in the user’s
home directory), the only thing left to make it executable is to type this
command to the Terminal window:

chmod u+x Desktop/QCA.command

This activates the executable bit of that file, and a subsequent double click will
trigger the above mentioned behavior ending up with a web page containing
a fresh instance of the user interface.
In Linux, a similar file can be created:

#!/bin/sh
R --slave --no-restore -e 'QCA::runGUI()' >/dev/null 2>&1 &
exit 0;

The exit 0 command ensures the terminal window is closed when the R
process stops.

2.4.4 Command Construction

Designing a graphical user interface for a command line driven software like
R can be a daunting task. The variety of R commands is huge, and the same
result can be obtained through many different ways. This is one of the reasons
for which R is such a versatile and flexible data analysis environment.
A menu system, by contrast, is highly inflexible: computer programs don’t
choose the best or the most efficient set of commands for a given problem, they
are designed with a single way to deal with every mouse interaction, making
the user interface look like a prison. Users of traditional, point and click data
analysis software (for example SPSS) many times believe the particular way
that software presents the “solution” is a golden standard.

2.4 The Graphical User Interface (GUI) 33

But that belief is very far from the truth, because any problem can be solved
in hundreds of different ways, depending only on users’ imagination. Some
ways are more efficient, some are less efficient but easier to read by other
peers, some are both efficient and easy to understand. By contrast, a point
and click menu system offers only one possibility out of a potentially infinite
number of ways to solve the same problem. It is the developer’s responsibility
to design intuitive ways to interact with the user interface, if possible some
that are suitable for both advance and novice users.
One purpose of this graphical user interface is to facilitate using the QCA
package, even for those users who don’t necessarily know how to use R, how-
ever it should be very clear that a user interface, even an intuitive one, can
never replace written commands.
To help users learn both QCA and R at the same time, one of the particularly
nice features of this user interface is the way it automatically constructs R
commands for any given dialog (Fig. 2.1).

Fig. 2.1 The command constructor dialog

This kind of feature is not new, in fact it was employed for many years by John
Fox in his R Commander user interface for R. What is different, and could
be seen as an improvement over R Commander, is the way the command is
constructed: interactively, upon each and every click on a specific dialog.
For novice users, it is extremely useful to see how a visual dialog to import a
dataset (for example), is transformed into written commands, using various
clicks to specify natural, but unknown parameters like what kind of column
separator it has, decimal separator, which column refers to the case names
etc.
The ultimate, long term goal is to avoid trapping users in a specific system
of menus and dialogs, by demonstrating how to achieve the same thing with
both clicks and written commands. There is a special “Command constructor”
dialog which is always present (and cannot be closed), which displays how the
command is constructed after every click on dialog options. Every such option
(or combination of options) corresponds to a specific set of formal arguments
from the QCA package functions, and hopefully users will understand how
these commands are constructed.
This ultimate goal will have been achieved when users will eventually stop
using the user interface completely, in favor of the more flexible written syntax:

34 2 The QCA Package

it should be a transition phase towards written commands, but it can be used
as a standalone application.
The command constructor is not editable: it automatically builds the com-
mands from various clicks in the menu dialogs, but this is not (yet) a fully
editable syntax editor. Future plans include extending this functionality, but
for the moment it is only meant for display purposes.

2.4.5 The Web R Console

The first versions of the user interface offered only the menu system, with all
communication between the webpage and R being rather hidden. While this
approach was simple enough to be understood by novice R users, it suffered
from a serious drawback: at some point, it becomes a burden to repeat dialog
clicks in order to obtain similar truth tables or minimized solutions.
In the regular R session, users can create many objects, including truth tables,
and also save the results of a Boolean minimization to a given object. It is not
only to avoid repeating commands, but more importantly because these kinds
of objects usually contain a lot of additional, useful information. For example,
the minimization process involves creating and solving a prime implicants
chart, which is not normally printed on the screen but can be inspected at a
later stage to completely understand how the minimization was performed.
Other users might be interested to inspect the easy and difficult counterfac-
tuals for a specific minimization (see Sect. 8.6), especially when directional
expectations have been used (Sect. 8.7). All this information is returned into
a single list object, out of which the internal function print only the solutions,
eventually their inclusion and coverage scores. Saving that list to an object
makes it possible to inspect it later, and this kind of interactivity is difficult to
capture in a graphical user interface because there are more types of objects
than what a user interface usually can display.
Newer versions of the user interface allow the possibility to create such ob-
jects directly from menus, however their inspection can only be performed
from the command line R console. Along with the “Command constructor”
dialog, the user interface has another mandatory dialog called the “R con-
sole”, with an attempt to mimic a regular R console and display the results
of the minimization commands, or even to display truth table objects.
In the first version(s), this web based R console was not interactive: it was
displaying what a normal R console would display, but users could not inter-
act with those objects. A lot of effort was invested to make this interaction
possible, in such a way that it would be as close as possible from a normal R

2.4 The Graphical User Interface (GUI) 35

window. Everything that would normally be displayed in the normal R console
is captured by the interface and printed on the webpage.
The newest versions of the user interface feature this interactive web R console,
that supports typing commands (exemplified in Fig. 2.2) so that users can use
menus and dialogs, as well as written commands, to produce and modify
objects.

Fig. 2.2 The R console dialog

Although it looks like the user interacts with R in a very direct way, in fact the
information from the user interface is collected (either from dialogs or from
the written commands) and sent to R as plain text. The communication is
mediated by package shiny, which brings back the response and specialized
Javascript code displays it either in the web R console or in various other
dialogs, including plots.
The experience is dual: dialogs can create or modify objects, while written
commands can re-create or modify various options in the dialogs. If the user
creates a new variable in the R console, the variable will be immediately
reported to the dialogs in the user interface, that get refreshed to display the
new set of variables. This kind of reactive interactivity is valid for almost
anything in the graphical user interface, from entire columns in the data to
individual values that are displayed in various plot dialogs.
The web console behaves almost exactly like a normal R console, just in a
distinct and separate evaluation environment. Objects that are created in the
web environment do not exist in the original R environment that started the
web interface, they are specific and unique to the web one. But otherwise
practically all normal R commands are allowed, including source(): it reads
the code within the sourced file and it interprets it just like the commands
from the web R console, and the result is brought to the web environment.

36 2 The QCA Package

2.4.6 Graphics

R is well known for the quality of its graphical devices, first developed at the
Bell Laboratories (Murrell 2006). It has a rather sophisticated system of both
low level and high level graphics, capable of drawing anything from simple
statistical plots to complex images with pattern recognition.
As complex as it is, this system is fixed: once drawn, a graphic is like an
image and to change something it needs to be recreated. It is possible to alter
various components of the graphic, but it is still not an interactive system.
On the other hand, the web based graphics could not be more different. They
might not be as sophisticated as R’s graphical system, but they more than
compensate through a lot of interactivity. A simple bar chart can behave
differently, if only because the bars can be programmed to react on mouse
over, or at click events: they change color, or get thicker borders, or display
various information about a specific category etc.
Since R commands are possible through the web R console, it made sense
to also capture graphics, in addition to printed output, errors and messages.
There are related packages like evaluate, knitr , raport or pander , which
parse source files to produce complex outputs (like reports, books or articles)
and they can include plot results within the text. Inspired by the work in those
packages, some effort was invested to bring the R graphics in the webpage
environment. Without going into many technical details, it involves saving
the plot from the base R to an SVG device, which can be read and displayed
in the web environment.
And since an SVG can be resized on the fly, the resulting plot dialog can be
resized and the graphic will automatically follow. Figure 2.3 is simple plot
example obtained with the following commands which can be typed in the
web user interface:

plot(1:11)
title("A simple plot")
abline(h = 6, v = 6)

Adding subsequent plot commands is possible (in this example adding a title
and drawing the cross lines), because the code first verifies if there is a plot
dialog open. If the plot dialog would be closed, any of the last two commands
would trigger the R error that “plot.new has not been called yet”.
There are many attempts to extend the base R graphics and make them
interactive, using either Java add-ins or RGtk2 with the cairoDevice, and there
is even an implementation of an openGL in package rgl for 3D interactive
plots (heavily used by the Rcmdr package). For some reasons, in the past
5 or 10 years, more results have been achieved with graphics in a webpage
than for traditional software. Perhaps because of the unprecedented use of the

2.4 The Graphical User Interface (GUI) 37

R plot window

A simple plot

Index

1:
11

2 4 6 8 10

2
4

6
8

10

Fig. 2.3 The main plot dialog

web world that attracts a high number of web developers, there are Javascript
libraries out there that can already rival traditional software and the trend
shows no signs of a slow down.
The SVG—Scalable Vector Graphics standard has been extended and it can
accommodate animations, morphing, easing and all sorts of path transforma-
tions based on matrix calculations. It is not surprising that libraries like D3.js
have appeared, which seems to be ideal for data driven graphic displays.
Improved results have been recently presented at the RStudio conference in
2017, with yet another interactive 3D network visualisation tool of the future
that uses a Javascript library called “threejs”, packed in a htmlwidget which
can be opened everywhere there is a fairly recent web browser installed. This
library can easily draw (and animate) force directed graphs with hundreds of
thousands of points.
It is far from the goal of this user interface to completely replace R’s graphical
system. Rather, the purpose is to enhance the traditional graphics system with
more interactive options, specific to a webpage.
Web graphics are different from the base graphics, and are drawn separately
in the web environment, reason for which the user interface presents three
different types of plot dialogs:
• one for a normal R plots (captured from the base R),
• one for the XYplots, and
• one for the Venn diagrams (last two started from dedicated menus).

38 2 The QCA Package

The first has already been discussed, allowing any kind of static graphics
including ggplot2 type of plots. In the XY plots, the points are allocated
labels that are displayed at mouse-over events, and the labels can be displayed
and rotated around the points. In the Venn diagrams, for every intersection
in the truth table that has cases, the mouse-over event displays those cases.
The long term goal is to unify all these plot dialogs in a single environment,
that would:
• automatically detect which type of plot is being used, and mediate different

interaction possibilities for each
• offer various export options depending on each type of plot: for the interac-

tive Javascript plots, it might necessary to export from SVG, or determine
the best command that produces the most similar static plot.

All of the web-based graphics are drawn using an excellent SVG based library
called “Raphäel.js”, entirely written in Javascript. In fact, all dialogs have
been designed using this Javascript library, with custom code for all radio
buttons, check boxes and every bit of interactivity.
The normal R plots can be saved on the hard drive in six most common
formats (the base R has even more possibilities), using the menu (Fig. 2.4):

Graphs/Save R Plot Window

Save R plot window

Type: PNG

BMP

JPEG

TIFF

SVG

PDF

File name: Save

root > Users > dusadrian > Work in progress > QCA book

+ figures
book.bib
QCAbook.aux
QCAbook.bbl
QCAbook.blg
QCAbook.idx
QCAbook.log
QCAbook.out
QCAbook.pdf
QCAbook.tex
QCAbook.toc

Choose directory:A simple plot

Index

1:
11

2 4 6 8 10

2
4

6
8

10

Fig. 2.4 The GUI dialog to export R graphics

2.4 The Graphical User Interface (GUI) 39

2.4.7 The Data Editor

One highly appreciated feature of any graphical user interface seems to be a
data editor. In principle, this kind of dialog is useful only for small datasets.
For large or very large data (thousands of rows and hundreds of columns), it
is obvious the data would not fit into the screen. Whatever the users “see” in
the data editor, no matter how large the dialog, is only a fraction of the entire
dataset, and the usual procedure is to move the visible area up and down, or
left and right.
Such a dialog is difficult to develop in a web environment. Usually, HTML
tables are split into small chunks, and users click on a “Next”, “Previous”,
“First”, “Last” buttons, or any other chunk number to have the respective
part displayed on the screen. This solution is understandable, because scrolling
through the entire dataset is sometimes impossible because the dataset would
have to first be loaded in the webpage before it can be scrolled.
Normal installed software can deal with this “loading” on the fly, working
with local compiled code which is extremely fast, but a webpage relies on
many other (slow) factors, for example the speed of the internet connection.
The Javascript language can be extremely fast too, but it cannot beat a locally
compiled code and it is not designed as a replacement. Its nature, that does
something in a webpage, serves very different purposes.
Loading time is especially essential, for nobody wants to spend more than a
couple of seconds before a webpage could be used. The traditional solution,
therefore, is to split the data in smaller chunks that could be quickly delivered
in the webpage. Faithful to this procedure, it is exactly the way RStudio
displays data in most of their Shiny apps.
This inconvenience has been properly dealt with in the QCA user interface,
which does not rely on classical HTML for display purposes. As mentioned in
the previous section, it uses an SVG based, Javascript library called Raphäel.js
that acts as a workhorse for the entire user interface. Instead of a regular
HTML table, the dialog constructs a Raphäel “paper” (a concept similar to
an HTML5 canvas), where it is possible to achieve scroll behavior by defining
the full length and width of the paper without actually populating the dialog
with the entire data.
Only the visible part is populated, and the rest is empty but ready to be
populated when the user scrolls to another specific location. Figure 2.5 shows
a vertical scrollbar on the right side, and the Javascript code behind detects a
mouse-scroll event that is binded to the Raphäel paper. Whenever the paper
is scrolled in any direction, the content of the cells is erased and the dialog
starts a communication process with R to ask about the content from the new
location. The behavior is very similar to a chunked HTML table (moving from
chunk to chunk), while in this case it is moving from one location to another
location (given by the new scroll).

40 2 The QCA Package

Data editor

AU
BE
CZ
EE
FI
FR
DE
GR
HU
IE
IT
NL
PL
PT
RO

DEV URB LIT IND STB SURV
720
1098
586
468
590
983
795
390
424
662
517
1008
350
320
331

33.4
60.5
69
28.5
22
21.2
56.5
31.1
36.3
25
31.4
78.8
37
15.3
21.9

98
94.4
95.9
95
99.1
96.2
98
59.2
85
95
72.1
99.9
76.9
38
61.8

33.4
48.9
37.4
14
22
34.8
40.4
28.1
21.6
14.5
29.6
39.3
11.2
23.1
12.2

10
4
6
6
9
5
11
10
13
5
9
2
21
19
7

-9
10
7
-6
4
10
-9
-8
-1
8
-9
10
-6
-9
-4

LR

Fig. 2.5 The data editor dialog

This is one feature that brings the usage experience a step closer to a normally
installed software. Custom code has been developed to make it look like a
normal spreadsheet instead of an HTML table. On the entire content of the
data editor dialog, there are click events that simulate the selection of a single
cell, or a row name, or a column name (all of them can be considered “cells”).
There is also a double-click event to simulate editing the content of any given
cell, by creating a temporary text box on top of the designated cell (at exact
coordinates): once the text has been edited, the webpage detects the “Enter”
or “Escape” events to move decide whether to commit the change or drop it.
When committing a change, a new communication process is started with R
to announce the change at that specific cell.
It might seem trivial, but this simple change has ripple effects throughout the
entire user interface. If the change modifies the range of values (say, by chang-
ing a value from 100 to 1000), the new range is reported to any other editor
which uses that variable (many such examples in the calibration chapter).
Finally, since the user interface has been upgraded to deal with multiple ob-
jects, it seemed natural to provide a quick way to select various data frames
from the workspace. The top left corner of the dialog shows a button with the
name "LR" written in red (the name of the dataset currently being displayed).
A click on that button opens up a dropbox containing all loaded datasets, and
selecting any of them will refresh the dialog with the new data.
When multiple datasets are loaded in the memory, they can be visualized in
multiple ways. Either selecting from the dropbox in the top left corner, or if
a dataset is small it can simply be printed on the screen, by typing its name

2.4 The Graphical User Interface (GUI) 41

in the R console. The normal R has another way to display a dataset, using
the function View().
When typing a command such as View(LR) in the base R console, a separate
window pops up where users are presented a very basic data browser. Under
Windows the data can be scrolled up-down and left-right, while in MacOS it
cannot even be scrolled, it looks as though it is a still image constructed in
the graphics window. And this is a window designed for browsing data only:
it cannot be modified in any way.
This is another reason to improve this functionality in the web interface, and
more custom core has been produce to capture the normal R output and
divert it to the web interface. Using the same command View(LR) in the web
R console, the data will be displayed in the interactive web data editor, despite
the command being evaluated in the “base” R, global environment.

2.4.8 Import, Export and Load Data

To bring the data file into R there are many alternatives, depending on the
file’s type. There are many binary formats from other software, but one of the
simplest way to exchange files, especially between different operating systems,
is to use a text based file. Usually, these files have a .csv extension (comma
separated value):

datafile <- read.csv("datafile.csv")

This command creates a new object called datafile in the workspace, com-
bining the function read.csv() with the assignment operator “<-”.
When looking at this command, a first time R user might be puzzled, as
it makes little sense and would likely fail on other computers. Most of the
commands in this book can simply be copied and run on the local computer,
and they should run just fine. But a command such as this one is bound to fail
on a different computer, for two reasons. First, the file on the hard drive has to
be named exactly “datafile.csv”, otherwise the user should change the name
of the CSV file, and second because the local computer has zero knowledge
about the location of the file.
As simple as it might seem, this scenario is potentially disruptive for the be-
ginners. There are two solutions to this situation in base R, plus an additional
one in the graphical user interface. The first basic solution is to set the work-
ing directory (a topic presented in Sect. 1.1) to the place where the CSV file
is located:

setwd("/path/to/a/certain/directory")

42 2 The QCA Package

The string "/path/to/a/certain/directory" should be changed according to
the local file system (here similar to Linux and MacOS). It can be verified if
the working directory was indeed changed to the desired location by typing
the command getwd().
The second solution, and probably one which should be preferred, is to specify
the complete path to a specific file, an approach which is independent of the
working directory settings above (the example below is specific to a Windows
environment):

datafile <- read.csv("D:/data/datafile.csv")

read.csv() has some other formal arguments, compatible with those from
the more general function read.table(). The user can specify whether the
file has a different separator (often tab separated value, for example) via the
argument sep, or indicate if the data file contains the variable names in the
first row, via the argument header, and so on.
The extension “.csv” is not important, sometimes the text files have a “.dat”
extension and rarely “.tsv”, the latest meaning tab separated values. The sep-
arator is the character that differentiates values from two different columns.
More details about all their arguments can be read using this command:

?read.table

The third solution is the most simple for all users, at any level. It requires no
prior knowledge of R commands, and it uses interactive dialogs for navigating
to a specific file, in a similar way to any normal graphical user interface. The
dialog is opened using the menu:

File/Import
Figure 2.6 shows a minimalistic, yet comprehensive import dialog where users
can navigate to a specific location in multiple ways. A first way is to double
click the lines on the right side of the dialog. Directories are signaled with a
plus + sign, and the parent directory is always the line with the two dots ..
at the top of the navigation area.
There are no “Back” (or “Forward”) button to select the previous directory,
however above the navigation area there is a structure of directories that
compose the current path. By double clicking any of the directories on that
path, the navigation area changes with the content of that directory. If the
path is very long (as in the figure), and it does not fit on the screen, it can
be dragged left and right using the mouse.
Finally, a fourth possible way to navigate to a specific directory is to manually
enter the path in the Directory textbox. This is very useful when working
with USB flash disks, that are mounted to very specific places (or under

2.4 The Graphical User Interface (GUI) 43

Separator:
comma

space

tab

other, please specify:

Decimal:
dot

comma

Column names in the file header

No./name of column
containing row names

Preview column names:

Directory:

ImportAssign to:

root > Users > dusadrian > Work in progress > QCA boo
..

+ figures
book.bib
QCAbook.aux
QCAbook.bbl
QCAbook.blg
QCAbook.idx
QCAbook.log
QCAbook.out
QCAbook.pdf
QCAbook.tex
QCAbook.toc

Import from text file

Fig. 2.6 The import dialog in the graphical user interface

Windows in very specific drives) that the web based user interface does not
know anything about.
Once a specific CSV file has been selected, there is an area on the left (below
the Preview column names) which is automatically filled with the names of
the columns, if they exist in the header of the file. This is an extra measure to
make sure the data will be correctly imported, before it is actually imported.
Should all settings be correct according to the structure of the CSV file, the
names of the columns are listed in that area.
Much like in the written command, there are various arguments to select
one or another column separator. By default, this is a comma (hence the
name of the CSV—Comma Separated Value file), but there are various other
possibilities, the most frequently encountered being a tab, or a space. Any
other separator (for instance a semicolon ; sign) should be manually entered
in the other, please specify: textbox.
Another setting is the Decimal radio box, for files where the decimal values
are separated with a dot (the default in the English speaking countries) or
with a comma (as encountered for instance in the Eastern Europe and German
speaking countries).
There is one final, optional setting to make, by specifying the No./name of
the column containing row names textbox. If any of the columns from
the datafile contains the names of the cases (or rows, as opposed to the names

44 2 The QCA Package

of the variables, or columns), this option will place these names on the rows
of the imported data. It can be either a number (the position of the column
containing the row names) or even the actual name of the column containing
these row names.
Before actually importing the data, a name should be given in the textbox
next to Assign checkbox, to save the data into an R object in the workspace.
Finally, a click on the Import button brings the data into R. This procedure
mimics the written command, with various arguments of the function being
manipulated via the dedicated options in the visual dialog.
All this procedure is needed to import custom data, but otherwise the ex-
amples from this book are exclusively based on the datasets that are already
part of the QCA package. They can be loaded by simply typing the command
data() with the name of the dataset, or use another dialog from the graphical
user interface:

File/Load

Venn diagram

Package: Dataset:

Help Load

datasets
QCA
venn

LF

CVF

HC
LC

CVR

Lipset's indicators for the survival of democracy
durng the inter-war period.

Fig. 2.7 Loading data from attached packages

In order to demonstrate functionality, many packages contain datasets needed
to replicate the commands from the functions’ help files. This is also very
convenient, saving the users from having to import their data themselves. To
access the datasets from a specific package, the package has to be loaded first,
using the function library() and the name of the package.
Once this command is given, the package becomes attached and the functions
inside (as well as the contained datasets) become available. In Fig. 2.7, there
are only three attached packages (datasets, QCA and venn), and package
QCA was selected. There are multiple datasets contained in this package,
among which the selected one in the dialog (LR).

2.4 The Graphical User Interface (GUI) 45

Once a specific dataset is selected, the box immediately below offers some
basic information about the data. A complete information about the dataset
(for instance what the name LR means, what columns does it contains, how
were they calibrated, from which theoretical reference is the dataset taken
from etc.) can be obtained by clicking on the Help button, which opens up a
different webpage.
Data is usually modified during the analysis, and there is no “Save” button to
make sure the modifications are preserved after the current session is closed,
neither in command line nor in the graphical user interface. That is due to a
particularity of R to maintain all objects in the memory (in the workspace, see
Sect. 1.2), and they need not be saved as long as R is still opened. Only when
closing R, all objects can be lost if they are not written to the hard drive.
The usual command to save a dataframe (or to export and save it to the
hard drive) is write.csv(), which is a particular case of the general function
write.table(). There are very many arguments to these functions, especially
those which are specific to certain operating systems (for instance, the end of
line code is different between Windows, Linux and MacOS). Also, there are
various options to select a text encoding, because most of the languages have
special characters (accents, diacritics etc.) which require a different encoding
than the default one.
This book does not cover all of those options, and readers are encouraged to
read about them in a general purpose book about R. Assuming that most of
the default options are sufficient for the vast majority of users, only some of
the arguments from write.csv() are going to be introduced.
The graphical user interface dialog, specific to exporting a dataset, is even
more simple. It contains only the very basic options, which should be enough
for most situations. There is a dedicated function in package QCA called
export(), that is basically a wrapper for the base function write.table()
with only one difference.
The main reason for this function is the default convention for the function
write.table() to add a blank column name for the row names. Despite this
(standard) convention, not all spreadsheet software can read this column prop-
erly, and many times the name of the first column in the dataset is allocated
to the column containing the row names.
The function export() makes sure that, if row names are present in the dataset
(in the sense they are different from the default row numbers) the exported file
will contain a proper column name called cases. If the dataset already contains
a column called cases, the row names will be ignored. Users are naturally free
to choose their own name for the column containing the row names.

46 2 The QCA Package

The dialog to export a dataset is opened with the menu (Fig. 2.8):

File/Export

root > Users > dusadrian > Work in progress > QCA book

+ figures
book.bib
QCAbook.aux
QCAbook.bbl
QCAbook.blg
QCAbook.idx
QCAbook.log
QCAbook.out
QCAbook.pdf
QCAbook.tex
QCAbook.toc

Separator:
comma

space

tab

other, please specify:

Write column names
Cases ID: cases

Dataset:

New file: Export

LR

Choose directory:

Export to text file

Fig. 2.8 Exporting a dataset from the graphical user interface

Since there is a single dataset in the workspace, it is the only object that
appears in the area below Dataset in the left part of the dialog. The rest
of the options should be self explanatory, from selecting the type of column
separator to choosing a directory where to save the dataset to.
A name for the file should be provided in the New file textbox. By default,
if a file with the same name exists in the selected directory, a checkbox will
appear asking to choose if the file will be overwritten.

Chapter 3
Set Theory

QCA is a methodology based on sound theoretical foundations and robust
software implementations. In the first version, Ragin (1987) presented a binary
system which was dubbed as the “crisp” sets (csQCA), and following various
critiques in the next years it was extended to fuzzy sets (fsQCA) with a pit
stop through the “multi-value” variant (mvQCA).
Whatever the version, the term “sets” is extensively used throughout the
QCA terminology, and its understanding is key to using the entire methodol-
ogy. Although very common in the social sciences, this term has its roots in
mathematics, where there are various types: set of real numbers, set of natural
numbers etc.
In the social sciences, a set can be understood as a synonym for a category, and
research methodology mentions many categorical variables such as Residence,
where the category “Urban” can be understood as the set of people living
in urban areas, and the category “Rural” as the set of people living in rural
areas.
Fueled by the developments of the Qualitative Comparative Analysis in the
recent years (Ragin 2000, 2008b) social research methodology witnesses an
interesting theoretical duel. Emerging from the artificial opposition between
the qualitative and quantitative research strategies (they approach the social
world in very different ways), a new kind of conceptual competition captivates
the community’s attention: the debate opposing variables and sets, with deep
implications regarding measurement and interpretation.

© Springer International Publishing AG, part of Springer Nature 2019
A. Dus,a, QCA with R, https://doi.org/10.1007/978-3-319-75668-4_3

47

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-75668-4_3&domain=pdf
https://doi.org/10.1007/978-3-319-75668-4_3

48 3 Set Theory

3.1 The Binary System and the Boolean Algebra

The natural language can be transposed into a mathematical language, com-
bining some fundamental laws of logic and a special type of language having
only two values: true and false.
The history of these values dates back from the Chinese concepts of Yin and
Yang, expressing a continuous duality in the nature. A similar line of thought
was advanced by the philosopher and mathematician Gotfried Leibniz (from
a biography written by Aiton 1985), who believed so much in the power of
these symbols that led him to invent the binary mathematics.
Leibniz devoted his entire life to this system, which in his final years became al-
most religious where 1 represented the good and 0 represented the bad. Similar
to the Chinese philosophy, Leibniz’s world was a continuous struggle between
good and bad, and he truly believed the binary system of mathematics had a
divine origin.
His work was neglected for almost 150 years until the middle of nineteenth
century, when another great mathematician named George Boole refined the
binary system to become useful for logics, as well as mathematics. Both Leib-
niz and Boole were well ahead of their times, when the scientific community
was not prepared for their work and failed to understand its use.
Boole’s system was also neglected by his peers, until a few decades later the
first real applications at the MIT—Massachusets Institute of Technology in
the United States.

3.2 Types of Sets

Towards the end of the nineteenth century, with an interest of some proper-
ties of the infinite series, the German mathematician and philosopher Georg
Cantor created a theory of abstract sets which fundamentally changed the
foundations of mathematics (Dauben 1979). His initial version (also known
as the naive set theory) was later very much extended, and the modern set
theory contains more axioms and types of sets than those described by Can-
tor. In summary, a set can be defined as a collection of objects that share a
common property.
The objects inside the set are called elements, and each such element is
unique. Mathematics has many set related properties and concepts: finite,
infinite, conjunct, disjunct, equal etc. It can be noted that social science
methodology, and especially comparative social science, uses a formal ter-
minology with many terms borrowed from set theory, for example employing
categories when segmenting human populations: rural/urban, males/females,
lower/medium/upper levels of education etc.

3.2 Types of Sets 49

Formally, there are two main types of sets:
• Crisp

– bivalent
– multivalent

• Fuzzy
The first family of crisp sets is Cantor’s original creation: an element is either
inside the set or outside. It contains two subcategories: the bivalent sets with
only two values, and the multivalent sets which can contain more than two
values (no limit on the number of values, but all are discrete).
Despite the QCA terminology making a distinction between crisp sets
(csQCA) and multi-value sets (mvQCA), in fact they are both “crisp” and
what has been coined as “crisp sets” are in fact bivalent crisp which, as it will
be shown, are a special case of multivalent crisp sets. Any bivalent crisp set
can be specified as a multi-value set with only two values.
The fuzzy sets family is different because a fuzzy set can have an infinitely
large number of possible values, and elements are not just in or out but more
or less included in a given set, starting from the value 0 (completely out) to
the value 1 (completely inside).

3.2.1 Bivalent Crisp Sets

The bivalent crisp sets are collections of well defined elements, having or
not having a certain property, therefore belonging or not belonging in the set
defined by that property. In a formal notation, any such set can be represented
by enumerating all its distinct elements:

A = {a1, a2, . . . , an}

The set of all elements from all set is called the Universe (U), and its elements
are x1...n ∈ U. All other sets are subsets of this Universe.
For each element in the Universe it can be said “yes” (true) if the element
belongs to a set A, and “no” (false) if it doesn’t. In the classical set theory,
elements have only two values: 0 (false) and 1 (true). In formal notation, there
is a function to attribute these two values:

µA(x) =
{
0 if x /∈ A
1 if x ∈ A

50 3 Set Theory

In the social sciences, crisp sets are also called mutually exclusive categories.
A rose is part of the flowers set, while a horse does not belong to this set. One
element can belong to multiple sets: a person can belong to the set of women
and to the set of mothers.
For any two sets A and B from universe U, we can say that A is a subset of
B if and only if any element that belongs to set A is also an element of the
set B:

A ⊂ B : {x ∈ A ⇒ x ∈ B}

A set that does not contain any element is called the empty set (the notation
is ∅), and this is a subset of any other set.
Starting from Aristotle, the origin of logics is bivalent, where any proposition
has a single truth value: either true or false. This system has three principles
(laws) of logics that constitute bivalent crisp sets:
• Principle of identity: an object is what it is (in other words, it is equal to

himself). This principle makes the distinction between an object and all
the others, similar to the psychology concept of “self” as compared with
“others”

• Principle of non-contradiction: it is impossible for an object to exist and
not exist at the same time, or for a phenomenon to both happen and not
happen. It is either one, or the other, but not both.

• Principle of excluded middle: a proposition is either true or false, there is
no third alternative.

3.2.2 Multivalent Crisp Sets

Traditional, scholastic logic is inherently bivalent, according to the principle of
excluded middle. However, bivalency has been questioned by Aristotle himself,
who formulated a paradox using propositional logic and a combination of
logical expressions, testing bivalency in a temporal order situation.
Truth values can be attributed to past events: once it happened, we cannot
say that a phenomenon did not happen because its truth value transcends
time. After it happened, it becomes true at any point in time: immediately
after, in the present and in the future.
The bivalent logic is compatible with the past (that we already know), but it
is difficult to apply for the future, a situation which laid Aristotle’s paradox.
Two thinking systems can be applied, with respect to the future:
1. Determinism: if something must happen, it will happen no matter what

we do. This is similar to the concept of fatalism, the belief that everything
is predetermined and inevitable, and we don’t have any control over our
fate.

3.2 Types of Sets 51

2. Free will: we decide what is going to happen, admitting the ability to
choose what it happens (as well as what it does not happen), in the
absence of any external constraint.

Any event has successive previous causal conditions, which have their own
causal conditions, to the infinity until the beginning of time. If going to the
future, as if it already happened, we will say the same thing about an event
which didn’t yet happen but is about to happen in the present, and that
event will have had its own infinite chain of causes. In a deterministic world,
an event is atemporal because, given all causal conditions which happened
in the past, are happening in the present and will happen in the future, the
event is necessarily bound to happen.
Aristotle made the statement: “Tomorrow, there will be a battle”, for which
it is impossible to attribute a truth value today, because it did not happen
yet. However, applying the deterministic logic to the future (the causal chain
inevitably leading to the event) negates the free will which today we know
that it’s true, thus breaking the principle of non-contradiction which states
that something cannot be true and false in the same time.
Approaching the deterministic system, the Polish philosopher Jan Łukasiewicz
created at the beginning of the twentieth century a logical system (Borkowski
1970) that goes past the traditional bivalent philosophy and offers a solutions
to Aristotle’s paradox. This system, noted with Ł3 has not two, but three
truth values:

µA(x) =

0 false
1/2 undetermined (neither true, nor false), partially true
1 true

Dismissed at first, Łukasiewicz’s philosophy was eventually accepted and led
to the generalisation of his trivalent system to multivalent systems with n
values. The truth values are obtained through a uniform division of the interval
[0, 1] into n distinct values:

{
0 = 0

n−1 ,
1

n−1 ,
2

n−1 , . . . , n−1
n−1 = 1

}

It can be seen that bivalent sets with only two values (0 and 1) are just a
particular case of a multivalent crisp set with n values. The attribute “crisp”
can be applied to any set where the elements are separated and distinct from
one another.

52 3 Set Theory

3.2.3 Fuzzy Sets

Crisp sets are generally finite. At least in the social sciences, qualitative vari-
ables don’t have an infinite number of categories. After the generalisation of
Łukasiewicz’s theory from 3 (Ł3) to n truth values (Łn), it was only a question
of time to a full extension of the theory towards an infinite number of possible
values. In fact, the model Łn is very close to the fuzzy sets, because n can be
a very large number (close to, or equal to infinity).
Instead of dividing the space in n distinct values, another solution was pro-
posed several decades later by the mathematician Lotfi Zadeh, who introduced
the concept of “fuzzy sets”.
In this original definition (Zadeh 1965, p. 338), these are:

. . . a class of objects with continuum of grades of membership. Such a set is char-
acterised by a membership (characteristic) function which assigns to each object a
grade of membership ranging between zero and one.

Between a minimum (nothing, zero) and a maximum (completely, one) there
is a continuum, an infinite number of degrees of membership. An element
can more or less belong to a set, not just inside or outside of the set. A
population is not simply rich or poor, but somewhere in between. Function of
the definition of welfare, a population belongs more in one set and less in the
other, but it is difficult to imagine it strictly belongs into only one of them.
At this point, fuzzy set theory separates from the established social science
methodology, where “rich” and “poor” are just the two opposite ends of the
same continuum. It is a current practice to use bipolar scales (e.g. Likert
type response scales) to measure attitudes and opinions on various levels of
agreement/disagreement.
From the perspective of fuzzy sets, on the other hand, rich and poor are two
separate sets, not just two ends of the same continuum. Each set has its own
continuum of degrees of inclusion, so that a person (or a country) can be both
rich and poor, in various degrees.
This is somewhat counter-intuitive from a quantitative, correlational point of
view (where social reality is defined symmetrically from small to large) but
it makes perfect sense from the perspective of set theory. It all relates to
something called simultaneous subset relations that defines social reality as
asymmetric, a topic which will be covered in more depth in Chaps. 5 and 6.
Another difference, and often source of confusion, is the apparent similarity
between a fuzzy set and a probability. Although they both take values in
the interval [0, 1], they are in fact very different things. If a stove has a 1%
probability of being very hot, there is still a chance to get severely burned
when touching it, but if the same stove has a 1% inclusion in the set of very
hot objects, we can touch and hold for as long as we want and it will still be
harmless.

3.3 Set Operations 53

3.3 Set Operations

In the algebra that carries his name, Boole (1854) formulated three basic
operations that are still very much in use today, extensively used in computer
programming. These three can be applied for both crisp and fuzzy sets, just
using different calculation methods.

3.3.1 Set Negation

This is probably the simplest possible operation, and the calculation method
is similar to both binary crisp and fuzzy sets. Negation consists in finding the
complement of a set A from the universe U, which is another set written as
~A, formed by all other elements from the universe U that are not in A.
Negation is a called a “unary” operation because it accepts only a single
argument. In R, there are various ways to negate either a truth value or a
binary numerical one.

!TRUE

[1] FALSE

The “!” sign is interpreted as “not” and it negates any logical value. It can
work on a scalar, and it also works on vectors.

lvector <- c(TRUE, TRUE, FALSE, FALSE)
!lvector

[1] FALSE FALSE TRUE TRUE

In this example, all values from the object lvector have been inverted. The
same kind of operation can be performed subtracting the values from 1:

1 - lvector

[1] 0 0 1 1

Due to the automatic coercion of data types (in this case from logical to
numeric), the true value become equal to 1 and those false become equal to
0, and the result is as simple as the mathematical subtraction from 1, which
works for binary crisp values as well as for fuzzy values:

fvector <- c(0.3, 0.4, 0.5)
1 - fvector

[1] 0.7 0.6 0.5

54 3 Set Theory

Negation is a bit more complex for multivalent sets, but the essence is the same.
For any such set with at least three values, say {0, 1, 2}, the complement of
{0} is the set containing the rest of the values {1, 2}. In the same fashion, the
complement of {1} is the set containing {0, 2}.
Negation is usually used with such numerical inputs but it doesn’t necessarily
be applied to numbers only. In natural language it can be applied just as
easily using the expression “not”. In terms of categories, an expression such as
“not male” consists of all individuals who are not males. Other expressions can
have logical implications, such as “not mother” which refers to all women who
are not mothers, because the set of mothers is a subset of the set of women.
Neither the “!” operator, nor the “1 -” operation can automatically be applied
to a multivalent set, because such a negation needs an additional information
regarding the set of all possible values. Negating a certain value from a multi-
valent set has an unknown result in the absence of the complete information
about all possible (other) values. To the limit, this information could be read
from the input dataset, but there is no guarantee the input is exhaustive.

3.3.2 Logical AND

This operation is also called a “logical conjunction” (or simply a conjunction),
and it takes a true value only when all its elements are true. If any of the
elements is false, the whole conjunction will be false.
In natural language, we may say students who have high grades are intelligent
and study hard. Non intelligent students don’t have high grades, just as in-
telligent students who don’t study hard. Only when both attributes are met,
both intelligent and study hard, the grades are high.
This can be exemplified with logics, the result of the logical AND operation
is true only when all conditions are true:

0 AND 0 = 0
0 AND 1 = 0
1 AND 0 = 0
1 AND 1 = 1

0 * 0 = 0
0 * 1 = 0
1 * 0 = 0
1 * 1 = 1

There are various combinations of vectors in R to exemplify, one of the specific
functions is all():

all(lvector)

[1] FALSE

3.3 Set Operations 55

The result of the function all() is false because at least one of the values of
lvector is false. Subsetting for the first two:

all(lvector[1:2])

[1] TRUE

In this case, the result is true because both first two values of lvector are
true.
Another R operator that refers to conjunctions (intersections) is the amper-
sand sign “&”, and the example can be further extended with combinations of
logical vectors:

rvector <- c(TRUE, FALSE, TRUE, FALSE)
lvector & rvector

[1] TRUE FALSE FALSE FALSE

Here, the result of the “&” (logical AND) operation is a vector of length 4,
comparing each pair of the values from lvector with those of rvector, and
the resulting values are true only when both values from lvector and rvector
are true, in this case only the first pair.
The R specific recycling rule can also be applied:

rvector <- c(FALSE, TRUE)
lvector | rvector

[1] TRUE TRUE FALSE TRUE

In this example, the shorter rvector (of length 2) has been recycled to reach
the length 4 of the longer lvector, and the final result shows a true value on
the second position because only the second values from both vectors are true.
Recycling didn’t matter in this case, because the third and fourth values from
lvector are both false.
The logical AND is also useful to make data subsets based on various criteria.
Using the data frame dfobject from Sect. 1, which has four rows, the following
can be applied:

subset(dfobject, A == "rural" & B > 13)

A B C D
C3 rural 14 7 3
C4 rural 15 8 4

In this example, only two cases (C3 and C4) conform to both conditions that
A is rural and B is greater than 13. Both these conditions generate logical
vectors that are combined with the “&” (AND) sign, and the resulting logical
vector is used to select rows from dfobject.

56 3 Set Theory

As already mentioned, another interpretation of the logical AND is that of
an intersection. When A is the set of intelligent students and B the set of
students who study hard, then intelligent students who study hard are found
at the intersection between A and B.
The base R has a function intersect() that intersects two sets:

lvector <- c(1, 3, 5, 6)
rvector <- c(2, 4, 5, 6)
intersect(lvector, rvector)

[1] 5 6

The fuzzy version of the logical AND has a different calculation method, be-
cause the set elements have values anywhere in the interval [0, 1], that is each
element has a membership value in a specific set.
A person may have a 0.8 membership score in the set of intelligent students,
and 0.3 in the set of students who study hard, and the logical operation is
obtained by taking the minimum of those membership scores:

A∩B =min(0.8,0.3) = 0.3

The result is a membership score in the set of “A and B”, equal to the mini-
mum between the two membership scores in the component sets. Zadeh (1965,
p. 341) calls it: “the largest fuzzy set which is contained in both A and B”.
TheQCA package has a function called fuzzyand() that is similar to the built-
in function pmin() that performs parallel minima, with some improvements.
It accepts vectors, and also data frames and matrices for which it applies a
min() function on the rows, thus simulating a parallel minima on a rectangular
object.
In addition, the result value of fuzzyand() is automatically given an attribute
called "name", which is the formal conjunctive notation of the result. To
achieve this, another improvement is the automatic detection of negated in-
puts using the usual "1 -" notation:

A <- c(0.7, 0.2, 0.4)
B <- c(0.2, 0.4, 0.5)
result <- fuzzyand(A, 1 - B)
result

[1] 0.7 0.2 0.4

Detection of negations becomes visible when inspecting the name attribute:

attr(result, "name")

[1] "A*b"

3.3 Set Operations 57

3.3.3 Logical OR

Logical OR is also called a “logical disjunction” (or simply a disjunction) and
refers to any alternative way to achieve a result. The logical OR is more strict
than the natural language word “or”, which has many other interpretations.
In the natural language it may sometimes refer to exclusively to one, or the
other, but not to both in the same time: “You can get to your workplace
taking a taxi or taking a bus”.
Some other times it may also refer to any option (inclusive), even both hap-
pening at the same time: “That person lost weight, so must have kept diet or
made a lot of sports”, where these options don’t exclude each other.
In logics, if any condition is true (even both at the same time), the result of
the logical OR operation is true:

0 OR 0 = 0
0 OR 1 = 1
1 OR 0 = 1
1 OR 1 = 1

0 + 0 = 0
0 + 1 = 1
1 + 0 = 1
1 + 1 = 1

These kinds of relations may be exemplified using various combinations of
logical vectors in R, having an immense applicability potential, especially for
indexing and subsetting purposes.

lvector <- c(TRUE, TRUE, FALSE, FALSE)
any(lvector)

[1] TRUE

In the example above, the object lvector is a logical with four values, first
two being true. The function any() returns true if any of those four values is
true, and it can be rewritten in natural language as: first is true, or second
is true, or third is true, or fourth is true. The final result is TRUE, because at
least one of those four values is true.
The example above can be further extended with combinations of logical vec-
tors:

rvector <- c(TRUE, FALSE, TRUE, FALSE)
lvector | rvector

[1] TRUE TRUE TRUE FALSE

In this example we have two logical vectors, combined with the “|” (logical
OR) sign, the result being another logical vector of length four, where only
the last value is FALSE because it is false in both input vectors.

58 3 Set Theory

The R specific recycling rule can also be applied:

rvector <- c(FALSE, TRUE)
lvector | rvector

[1] TRUE TRUE FALSE TRUE

Here, the shorter vector rvector has been recycled at the length of the longer
vector lector, and this time the third value is FALSE because when rvector
has been recycled, its third value becomes false and the third value in lvector
is also false.
Just as the previous two logical operations, the logical OR can also be useful
to make data subsets based on various criteria. Using the same data frame
dfobject:

subset(dfobject, B > 13 | C > 5)

A B C D
C2 urban 13 6 2
C3 rural 14 7 3
C4 rural 15 8 4

Here, there are three rows which conform to both expressions. The row “C2”
was preserved into the subset even though it was not true for the expression
B > 13, however it was true for the other expression C > 5.
Another interpretation of the logical OR is a union of two or more sets, the
result being another set containing all unique elements from the other sets.
In R there is a function union() that does precisely that thing:

lvector <- c(1, 3, 5, 6)
rvector <- c(2, 4, 5, 6)
union(lvector, rvector)

[1] 1 3 5 6 2 4

The resulting union has all the unique values from both lvector and rvector,
in the order they first appear as unique.
The fuzzy version of the logical OR also implies values in the interval [0, 1]. If
a person has a 0.8 membership score in the set A of intelligent students, and
0.3 in the set B of students who study hard, the logical operation is obtained
by taking the maximum of those membership scores:

A∪B =max(0.8, 0.3) = 0.8

The result is a membership score in the set of “either A or B”, equal to the
maximum between the two membership scores in the component sets. Zadeh
(1965, p. 341) calls it: “the smallest fuzzy set containing both A and B”.

3.4 Complex Operations 59

The QCA package has a corresponding function called fuzzyor(), similar to
the built-in function pmax() (from parallel maxima), with an added feature to
automatically detect the negated inputs using the “1-” notation:

A <- c(0.7, 0.2, 0.4)
B <- c(0.2, 0.4, 0.5)
result <- fuzzyor(1 - A, B)
result

[1] 0.3 0.8 0.6

Similar to the sibling function fuzzyand(), there is a name attribute which
contains the string expression corresponding to the input vectors. By default,
the expression is constructed using a lower/upper case notation unless the
object names already contain lower case letters, a situation when the negation
is signalled with a tilde sign.
Enforcing the tilde sign is possible by activating the argument use.tilde:

result <- fuzzyor(1 - A, B, use.tilde = TRUE)
attr(result, "name")

[1] "~A + B"

The same result can be obtained by directly negating the object using a tilde:

attr(fuzzyor(~A, B), "name")

[1] "~A + B"

3.4 Complex Operations

The examples presented in the previous section are demonstrative only, re-
ferring either to single sets or at most two sets. Most commonly however,
expressions can involve more sets with various combinations of all three basic
operations of set negation, logical union and logical intersection.
The functions fuzzyand() and fuzzyor() themselves, although capable of han-
dling any kind of complex example, are also mainly used for didactic purposes.
The packageQCA has yet another function which can replace both them, and
perform even more complex operations. The final example in the last section
can be re-written as:

compute("~A + B")

[1] 0.3 0.8 0.6

60 3 Set Theory

In these kinds of string based expressions, the tilde sign “∼” can be used
to negate a condition, then logical union is signaled with a plus sign “+”,
while the intersections are most of the times signaled with a star sign “*”,
excepting the situations when the expression is multi-value (when the star
sign is redundant) or when the set names are taken from a dataset.
The function compute() is versatile enough to search for the input conditions
A and B, either within the list of objects created in the user’s workspace, or
within the columns of a dataset specified with the argument data:

data(LF)
compute("DEV*STB + ~URB*~LIT", data = LF)

[1] 0.43 0.98 0.58 0.16 0.58 0.95 0.31 0.87 0.12 0.72 0.59 0.98 0.41
[14] 0.98 0.83 0.70 0.91 0.98

The same result would be obtained using a combination of two fuzzyand()
and one fuzzyor(), but feeding a sum-of-products (SOP) expression to the
function compute() is many orders of magnitude more simple.
Complex expressions can be simplified by applying a few simple Boolean rules:
A · A = A
A · A·B = A·B
A + A·B = A
A + ∼A = 1
A · ∼A = ∅
A · ∅ = ∅

In particular, negations are very effective applying DeMorgan’s rules:
∼(A + B) = ∼A · ∼B
∼(A · B) = ∼A + ∼B
Such simplifications are automatically applied by the function sop(), for in-
stance on some of Ragin’s examples from his 1987 original book. The first is
an intersection between the developmental perspective theory (Lg) and the
resulting equation for the outcome E, ethnic political mobilization (page 146):

sop("Lg(SG + LW)", snames = "S, L, W, G", use.tilde = TRUE)

[1] "L*W*~G"

A more complex example shows the subnations that exhibit ethnic political
mobilization (E) but not hypothesised by any of the three theories (page 147):

sop("(SG + LW)(GLs + GLw + GsW + lsW)", snames = "S, L, W, G")

[1] "S*L*w*G + s*L*W*G"

The simpler expression can be used as input for the function compute(), with
an identical result as the one for the complex expression.

Chapter 4
Calibration

The usual QCA data is numeric, and has specific formats for each flavour:
when crisp (either binary or multi-value) the data consists of integers starting
from the value of 0, and when fuzzy the values span over a continuous range,
anywhere between 0 and 1.
Not all data from scientific research conform to these formats. In fact, one
can actually expect the contrary, that most of the times the raw data has a
different shape than expected to perform QCA. There are numeric variables
of all types and most importantly of all ranges, and there are qualitative
variables that separate cases into categories etc.
Calibration is a fundamental operation in Qualitative Comparative Analysis.
It is a transformational process from the raw numerical data to set member-
ship scores, based on a certain number of qualitative anchors or thresholds.
The process is far from a mechanical transformation, because the choice of
the calibration thresholds is a theoretically informed one and dramatically
changes the result of the calibration process.
Although this book is more about the practical details on how to perform
QCA specific operations with R, it is still important to cover (at least in a
brief way) the theoretical concepts underpinning these operations.
Typically, social science research data are separated into four levels of mea-
surement: nominal, ordinal, interval and ratio. Virtually all of them can be
calibrated to binary crisp sets, almost but not all can be calibrated to multi-
value crisp sets, while in the case of fuzzy sets only the “interval” and “ratio”
levels of measurement can be used. However, the concept of “calibration” is
something different from the concept of “measurement” (Ragin 2008a,b).
When thinking about “measurement”, the social science researcher arranges
the values of a variable in a certain order (where some of the values
are smaller/higher than others), or calculate their standardized score by

© Springer International Publishing AG, part of Springer Nature 2019
A. Dus,a, QCA with R, https://doi.org/10.1007/978-3-319-75668-4_4

61

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-75668-4_4&domain=pdf
https://doi.org/10.1007/978-3-319-75668-4_4

62 4 Calibration

comparing all of them with the average of the variable: some will have
positive scores (with values above the average), and some will have negative
scores (values below the average).
While this approach makes perfect sense from a mathematical and statistical
point of view, it tells almost nothing in terms of set theory. In the classical
example of temperature, values can be arranged in ascending order, and any
computer will tell which of the values are higher than others. But no computer
in the world would be able to tell which of the temperature values are “hot”,
and which are “cold”, only by analysing those values.
Mathematics and statistics usually work with a sample, and the derived mea-
surement values are sample specific. The interpretation of the values, however,
need more information which is not found in the sample, but in the body
of theory: “cold” means when the temperature approaches 0◦C (the point
where the water transforms into ice) and “hot” means when the temperature
approaches 100◦C (the point where the water transforms into vapours). This
kind of information is not found in the sample, but outside.
The same can be said about any other numerical variable. Considering people’s
heights, for instance, computers can tell which person has a higher height
the other(s), but it could not tell what it means to be “tall” and what it
means to be “short”. These are human interpreted, abstract concepts which
are qualitative in nature, not quantitative, and most importantly they are
culturally dependent (a tall person in China means a very different thing
than a tall person in Sweden).
In the absence of these humanly assessed qualitative anchors, it is impossible
for a computer (or a researcher with no other prior information) to derive
qualitative conclusions about the values in the sample.
The first section in this chapter is dedicated to crisp calibrations, showing that
it is actually improper to use the term “calibration” for crisp sets, since they
involve a simple recoding of the raw data instead of a seemingly complicated
calibration process.
The second section is devoted to the proper fuzzy calibration, including vari-
ous types of “direct” calibration and also the “indirect” calibration. Multiple
methods are available for the direct method of calibration, depending of the
definition of the concept to be calibrated, and package QCA is well equipped
with a complete set of tools to deal with each such situation. The indirect
method of calibration is very often misinterpreted with a direct assignment of
fuzzy scores, but it is much more than that.
The final section is dedicated to calibrating categorical data, as an attempt to
clarify some aspects regarding the meaning of the word calibration and how
the final outcome of the calibration process depend heavily on the type of
input data.

4.1 Calibrating to Crisp Sets 63

4.1 Calibrating to Crisp Sets

When using only one threshold, the procedure produces the so called “binary”
crisp sets dividing the cases into two groups, and if using two or more thresh-
olds the procedure produces the “multi-value” crisp sets. In all situations, the
number of groups being obtained is equal to the number of thresholds plus 1.
All previously given examples (temperature, height) imply numerical variables,
which means the concept of calibration is most often associated with fuzzy
sets. That is a correct observation, because the process of calibration to crisp
sets is essentially a process of data recoding. As the final result is “crisp”, for
binary crisp sets the goal is to recode all values below a certain threshold to
0, and all values above that threshold to 1 (for multi-value crisp sets, it is
possible to add new values for ranges between two consecutive thresholds).
As in all other sections and chapters, wherever there are options for both
command line and graphical user interface, the demonstration starts with the
command line and the user interface will follow in close synchronization.
To exemplify this type of calibration, a well known data from the Lipset (1959)
study is going to be loaded into the working space via this command:

data(LR)

There are four versions of the Lipset dataset included in the QCA package:
LR (the raw data), LC (calibrated to binary crisp sets), LM (calibrated to
multi-value crisp sets) and LF (calibrated to fuzzy sets). The description of
all columns, including the outcome, can be found via the command ?LR.
This example concentrates in the column DEV, referring to the level of devel-
opment as GNP per capita, measured in US dollars (values for 1930), which
spans from a minimum value of 320 and a maximum value or 1098:

sort(LR$DEV)

[1] 320 331 350 367 390 424 468 517 586 590 662 720 795
[14] 897 983 1008 1038 1098

Before determining what an appropriate threshold is, to separate these values
into two groups (0 as not developed, and 1 as developed to create a binary
crisp set), it is always a good idea to graphically inspect the distribution of
points on a horizontal axis.
The graphical user interface has an embedded threshold setter in the dialog
for the calibration menu, and there are various ways to create a similar plot
via command line, using for example the function plot(), but the simplest
would be to use the dedicated function Xplot() that inspects just one variable,
with a similar looking result as the threshold setter area in the user interface
(Fig. 4.1):

64 4 Calibration

Xplot(LR$DEV, at = pretty(LR$DEV), cex = 0.8)

Fig. 4.1 The distribution of DEV values

This particular plot has sufficiently few points that don’t overlap much, but if
there are many overlapping points the function has an argument called jitter
which can be activated via jitter = TRUE.
In the absence of any theoretical information about the what “development”
means (more exactly, what determines “high” or “low” development), one
approach is to inspect the plot and determine if the points are grouped in
natural occurring clusters. It is not the case with this distribution, therefore
users can either resort to finding a threshold using a statistical clustering
technique, or search a relevant theory.
In the QCA package there is a function called findTh() which employs a
cluster analysis to establish which threshold values best separates the points
into a certain number of groups. To separate into two groups, as explained in
Sect. 2.3.2, no other additional parameters are needed because the number of
thresholds (argument n) is by default set equal to 1. The command is:

findTh(LR$DEV)

[1] 626

The value of 626 was found by a complete hierarchical clustering, using the
Euclidean distance (see the default values of arguments hclustm and distm).
However, Rihoux and De Meur (2009) have decided to use a close but different
threshold value of 550 USD for their binary crisp calibration. Initially, they
have used a threshold of 600 USD but upon closer inspection during their
analysis, they have found that a value of 550 USD accounts for a natural ‘gap’
in the distribution of values and better “differentiates between Finland (590
USD) and Estonia (468 USD)”.
If not for the threshold value of 550 USD, Finland and Estonia would fall in
the same category of development, and there is clearly a difference between the
two neighbouring countries. This is a fine example of how theory and practical
experience are used as a guide to establish the best separating line(s) which
define the crisp groupings of cases. This is a qualitative assessment originating
from outside the dataset: it is not something derived from the raw data values,
but from external sources of knowledge, and makes a perfect example of the
difference between “calibration” and raw data “measurement”.

4.1 Calibrating to Crisp Sets 65

The final, calibrated values can be obtained with two different methods. The
first is to use the calibrate() function and chose the type = "crisp" argument
(the default is "fuzzy"):

calibrate(LR$DEV, type = "crisp", thresholds = 550)

[1] 1 1 1 0 1 1 1 0 0 1 0 1 0 0 0 0 1 1

There are other arguments in the function calibrate(), but all of those refer
to the fuzzy type calibration. In the crisp version, these two arguments are
the only necessary ones to obtain a calibrated condition.
The crisp version of calibration is essentially equivalent to recoding the original
raw data to a finite (and usually very low) number of crisp scores. Therefore a
second method, which will give exactly the same results, is to use the recode()
function from package QCA, using the following command:

recode(LR$DEV, rules = "lo:550 = 0; else = 1")

[1] 1 1 1 0 1 1 1 0 0 1 0 1 0 0 0 0 1 1

The syntax of the recode() function is very simple, having only two formal
arguments: x and rules, where the first is the initial raw vector of data to
be recoded, while the second is a string determining the recoding rules to be
used. In this example, it can be translated as: all values between the lowest
lo and 550 (inclusive) should be recoded to 0, and everything else should be
recoded to 1.
Calibrating to multi-value crisp sets is just as simple, the only difference being
the number of thresholds n that divide the cases into n + 1 groups:

findTh(LR$DEV, n = 2)

[1] 626 940

The clustering method finds 626 and 940 as the two thresholds, while Cron-
qvist and Berg-Schlosser (2009) used the values of 550 and 850 USD to derive
a multi-value causal conditions with three values: 0, 1 and 2:

calibrate(LR$DEV, type = "crisp", thresholds = "550, 850")

[1] 1 2 1 0 1 2 1 0 0 1 0 2 0 0 0 0 2 2

The argument thresholds can in fact be specified as a numerical vector such
as c(550, 850), but as it will be shown in the next section, when calibrating
to fuzzy sets this argument is best specified as a named vector and its most
simple form is written between two double quotes. This is an improvement
over the former specification of this argument, but both are accepted for
backwards compatibility.

66 4 Calibration

Using the recode() function gives the same results:

recode(LR$DEV, rules = "lo:550 = 0; 551:850 = 1; else = 2")

[1] 1 2 1 0 1 2 1 0 0 1 0 2 0 0 0 0 2 2

This specification of the argument rules assumes the raw data are discrete in-
tegers, but in fact the recode() function has another specification inspired by
the function cut(), which works with both discrete and continuous data. This
other method uses a different argument named cuts (similar to the argument
breaks from function cut() and also similar to the function thresholds from
function calibrate(), to define the cut points where the original values will be
recoded) and a related argument named values to specify the output values:

recode(LR$DEV, cuts = "550, 850", values = 0:2)

[1] 1 2 1 0 1 2 1 0 0 1 0 2 0 0 0 0 2 2

As mentioned, there are various dialogs in the graphical user interface to match
these commands. The calibration dialog is one of the most complex from the
entire user interface, and Fig. 4.2 shows the one appearing after selecting the
menu:

Data/Calibrate

crisp

fuzzy
find thresholds

jitter points

th1
550

th2
850

calibrate into
new condition DEVC Run

LR

DEV
URB
LIT
IND
STB
SURV

Dataset:

Choose condition:

EE

400 600 800 1000

2Number of thresholds:

Calibrate

Fig. 4.2 The crisp “Calibrate” dialog

4.1 Calibrating to Crisp Sets 67

The procedure to use this dialog is very straightforward and involves a number
of intuitive steps:
1. select the dataset from the list in the Dataset area: in this example a

single dataset is loaded, but R can work with any number of datasets in
the same time (one thing to notice, if there is a single dataset loaded in
R, it will automatically be selected by the interface)

2. select the condition from the list under the Choose condition area,
with the immediate effect of the distribution of values appearing in the
threshold setter area

3. choose crisp from the radio button pairing with fuzzy (this is the equiv-
alent of the argument type in the written command)

4. if threshold values are to be suggested by the computer, check the find
thresholds checkbox; it has no direct equivalent with the arguments of
the calibrate() function, but it is using the findTh() function behind
the scenes

5. if points are too densely clustered, check on the jitter points checkbox
to scatter the points vertically with small random values

6. adjust the number of thresholds via the down or up buttons
7. whether or not asking the computer for thresholds, their values can be

manually (over)written in the text boxes right above the plot area
8. independently of manual or automatic specification of the thresholds val-

ues, their correspondent vertical red bars in the plot area can be manually
dragged left or right, and the text boxes from step 7 will change accord-
ingly

9. if the calibrated values should be saved as a different variable in the same
dataset, check the calibrate into new condition and specify the new
(calibrated) condition name (otherwise it will overwrite the same condition
with the new values)

10. click the Run button and the new column should appear in the dataset,
visible either in the console or in the data editor.

Figure 4.2 presents a situation where the condition DEV from the dataset
LR is calibrated to multi-value crisp sets using two thresholds (550 and 850)
which are manually set (the “find thresholds” option is unchecked), with points
jittered vertically to avoid overlapping.
Since the user interface is developed into a webpage, it makes sense to use all
the advantages of this environment. The points have a “mouse-over” property,
and respond with the label of the point (the row name of that particular case),
in this example displaying EE (Estonia), a country from the dataset LR.
The dialog allows up to six thresholds for the crisp type, dividing a causal
condition in at most seven groups. This is a limitation due to the lack of
space in the dialog, but otherwise the command line can specify any number
of thresholds. Cronqvist and Berg-Schlosser (2009) have given a fair number
of practical advice in order to decide for how many thresholds should be set.
Apart from the already mentioned guides (to look for naturally occurring
clusters of points, and employing theoretically based decisions), one other

68 4 Calibration

very good advice is to avoid creating large unbalances in the group sizes,
otherwise solutions will possibly be too case specific (finding solutions that
explain exactly 1 or 2 cases, whereas a scientifically acceptable result should
allow more general solutions, at least to some degree).
This particular distribution of data points are rather clearly scattered, but
other datasets can have hundreds of overlapping points, a situation when the
area dedicated for the thresholds setter will prove to be too small even if
points are jittered. However, this is not a problem for an interface designed
into a webpage: unlike traditional user interfaces where dialogs are fixed, this
particular interface is designed to be responsive, reactive and above all inter-
active.
Notice the small handling sign in the bottom right corner of the dialog (all
resizable dialogs have it), which can be used to enlarge the dialog’s width to
virtually any dimension until the points will become more clearly scattered for
the human eye. The result of such dialog enlargement can be seen in Fig. 4.3.

2Number of thresholds:

crisp

fuzzy
find thresholds

jitter points

th1
550

th2
850

calibrate into
new condition DEVC Run

Calibrate

URB
LIT
IND
STB
SURV

Dataset:

Choose condition:

400 600 800 1000

Fig. 4.3 The resized “Calibrate” dialog

Many dialogs are allowed to be resized (for example the plot window), and
the content inside is automatically recalculated to the new dialog dimensions.
In this particular example, only the threshold setter area was redrawn and
the bottom controls (including the Run button) have been repositioned. All
other buttons and controls have been left to their original position.
As shown in Sect. 2.4, each click and every action like dragging thresholds left
or right, triggers a modification of the “Command constructor” dialog. From
the second step where the condition is selected, the command constructor

4.1 Calibrating to Crisp Sets 69

starts to display the equivalent written command which, upon the click of the
Run button, will be sent to the R console. There are so many features in the
graphical user interface that a thorough description of every single one of them
would require too much book space and distort the user’s attention from the
important topics. To mention just one such “hidden” feature, when multiple
thresholds are present in the thresholds setter area, they are automatically
sorted and displayed in increasing order, with a limited bounded drag range,
between the minimum and maximum of the values found in the data.
The “Command constructor” dialog is refreshed on every click, with the aim
to help the user construct the command itself, rather than clicking through
the dialogs. This will pay off since the written commands are always better
than a point-and-click approach. While users can easily forget what did they
click to obtain a particular result, commands saved in dedicated script files are
going to be available at anytime and this is helpful for replication purposes:
it is more complicated to replicate clicks than to run a script file.
Since there are two functions that accomplish the same goal of calibrating to
crisp sets, there are also two separate dialogs. The next to be presented refers
to a menu which is not so much related to QCA per se but it accomplishes
a more general data transformation process which is present in almost any
other software:

Data/Recode

LR

DEV

recode into
new condition DEVR

Old value(s): New value:

value

lowest to

 to highest

missing

all other values

value

missing

copy old values

Add Remove Clear

Run

Recode

URB
LIT
IND
STB
SURV

Dataset:

Choose condition:

lo:550=0
551:850=1
851:hi=2

851

2

to

Fig. 4.4 The “Recode” dialog

The design of this dialog is largely inspired from the recoding menu of the
SPSS software, to which many of the social science users are very accustomed

70 4 Calibration

with. Figure 4.4 presents the same areas to select for Dataset and Choose
condition: as in the calibration dialog, but otherwise it has the familiar “Old
values” and “New values” sections which are found in the other software.
This dialog also has a rather straightforward procedure to use, with the same
first two steps as in the calibrate dialog (to select the dataset and the condi-
tion), therefore will continue from the third step:
3. select the radio button or the relevant text box(es) and insert the thresh-

old(s), in the Old value(s) part of the dialog
4. insert the new value or select from the other options in the New value

side of the dialog
5. press the Add button to construct the rule
6. repeat steps 3–5 for each recoding rule
7. if the recoded values should be saved as a different variable in the same

dataset, check the recode into new condition and specify the new (re-
coded) condition name (otherwise it will overwrite the same condition with
the new values)

8. click the Run button and the new column should appear in the dataset,
visible either in the console or in the data editor.

There are two additional buttons on the right side of the dialog: Remove
erases any selected rule(s) from the recoding rules area, and Clear erases all
rules at once. As any rule of the rules is selected, their correspondent radios
and text boxes are completed with the rule values, both in the old and new
parts. This allows modifications to any of the rules, and a second press on the
Add button brings those modifications in the rules area.
As long as the recoding rules do not overlap (an ‘old’ value should be covered
by only one of the recodings), the order of the rules doesn’t matter. But if
many recoding rules cover the same old values, then precedence has the last
specified rule (which overwrites recodings made by the first specified rules).
As always, a few toy examples in the command line with only a handful of
values will show the user how the command works for every scenario.
This section ends with the conclusion that calibration to crisp sets is essentially
equivalent to recoding the initial raw causal condition with a set of discrete
new values. The next section demonstrates what the “real” calibration is all
about, applied to fuzzy sets. It is the main reason why the default value of the
type argument has been changed to "fuzzy", despite its long lasting traditional
default value of "crisp" in all previous versions of the QCA package.

4.2 Calibrating to Fuzzy Sets 71

4.2 Calibrating to Fuzzy Sets

Social science concepts are inherently difficult to measure. Unlike physical
sciences where things can be directly observed and measured, in the social
sciences things are not directly observable, hence their measurement is always
challenging and often problematic. Some of the concepts from the social world
are more easily observable: sex, age, race etc., but the bulk of the social science
concepts are highly abstract and need substantially more effort to have them
measured, or at least to create an attempt of measurement model. These are
complex, multi-dimensional concepts which require the use of yet another (set
of) concepts just to obtain a definition, and those concepts need a definition
of their on etc.
Neuman (2003) presents an in-depth discussion about the role of concepts in
social research, for both quantitative (positivist) and qualitative (interpretive)
approaches. The measurement process is different: quantitative research define
concepts before data collection and produces numerical, empirical information
about the concepts, while in the qualitative research concepts can be produced
during the data collection process itself.
Both approaches use conceptualization and operationalization in the mea-
surement process, in a tight connection with the concept definition, although
Goertz (2006b) has an ontological perspective arguing there is more about
concepts than a mere definition, because researchers need to first establish
what is “important” about the entity in order to arrive at a proper definition.
Concepts have a tight interconnection with theory: sometimes the concept
formation process leads to new theories, while established theories always use
accepted definitions of their concepts. These definitions can change depending
on the theoretical perspective employed in the research process. Although
not directly concerning QCA, it is a nevertheless important discussion for
calibration purposes.
From yet another point of view, concepts have a cultural background just as
much they have a theoretical one. This cultural dependence can happen in at
least two different ways:
(a) concepts have different meanings in different cultures: altruism in Hungary

is probably something different from the altruism in Korea (to compare
very different countries), or the well known continuum for left and right
political positioning doesn’t have the same meaning in Japan, where po-
litical participation resembles very little if nothing at all with the Western
concept of “participation”

(b) even if concepts have the same meaning, their level of concentration can
dramatically differ in different cultural and/or historical contexts, for ex-
ample citizenship or public participation which has very high levels in a
country like Belgium, and very low levels in a post-communist country
like Romania.

72 4 Calibration

4.2.1 Direct Assignment

The method of direct assignment is the simplest possible way to obtain a
(seemingly) fuzzy calibrated condition from some raw numerical data. The
term “direct assignment” has been introduced by Verkuilen (2005), while
something similar was briefly mentioned by Ragin (2000).
It is likely a method that is tributary to Verkuilen’s formal training in ex-
perimental psychology, where expert knowledge is both studied and employed
in conjunction with various scales. In the direct assignment, the fuzzy scores
are allocated by experts the way they seem fit, according to their expertise.
There can be some form of theoretical justification for the various thresholds
separating the fuzzy scores, but in the end this is a highly subjective method
and it is likely that no two experts will reach exactly the same values.
To avoid the point of maximum ambiguity 0.5, the experts typically choose
four, and sometimes even six fuzzy scores to transform the raw data into a
fuzzy set. This procedure is extremely similar to the recoding operation when
calibrating to crisp sets, with the only exception that the final values are not
crisp, but fuzzy between 0 and 1.
To exemplify, we can recode the same condition DEV from the raw version of
the Lipset data:

recode(LR$DEV, cuts = "350, 550, 850", values = "0, 0.33, 0.66, 1")

[1] 0.66 1.00 0.66 0.33 0.66 1.00 0.66 0.33 0.33 0.66 0.33 1.00 0.00
[14] 0.00 0.00 0.33 1.00 1.00

All values between 0 and 350 are recoded to 0, the ones between 351 and
550 to 0.33, the ones between 551 and 850 to 0.66 and the rest are recoded
to 1. Supposing the thresholds (in this case, the cuts) have some theoretical
meaning, this is a very simple and rudimentary way to obtain a seemingly
fuzzy calibrated condition.
Arguably, the end result is by no means different from a calibration to crisp
sets, obtaining a new condition with four levels:

recode(LR$DEV, cuts = "350, 550, 850", values = "0, 1, 2, 3")

[1] 2 3 2 1 2 3 2 1 1 2 1 3 0 0 0 1 3 3

Naturally, more levels and generally more multi-value conditions in a dataset
expand the analysis with even more possible causal configurations, and from
this point of view a fuzzy set (even one having four fuzzy categories) is prefer-
able because it is at least confined between 0 and 1. But while fuzzy sets are
notoriously averse against the middle point 0.5, the crisp sets are more than
willing to accommodate it in a middle level, for instance creating a multi-value
crisp set with three levels:

4.2 Calibrating to Fuzzy Sets 73

recode(LR$DEV, cuts = "500, 850", values = "0, 1, 2")

[1] 1 2 1 0 1 2 1 0 0 1 1 2 0 0 0 0 2 2

Here, the crisp value of 1 would correspond to a fuzzy membership value of
0.5 and the crisp value of 2 would correspond to a full fuzzy membership value
of 1. As it will later be shown, especially in Chap. 7, such a thing is forbidden
with fuzzy sets.
Due to its sensitivity to individual expertise, it is difficult to conceptualize the
result of a direct assessment as a proper fuzzy set. One year later, Smithson
and Verkuilen (2006) don’t mention this method at all in their book, and
another 2 years after that Ragin (2008b) doesn’t even discuss anything related
to the direct assignment and presents exclusively what he calls the “direct
method” and the “indirect method” of calibration, which are going to be
presented in the next sections.
Very likely, many users might confuse the direct assignment with the direct
method, and believe that manually assigning (seemingly) fuzzy scores to some
properties is not only an acceptable method, but it is recommended by Ragin.
This is undoubtedly far from the actual situation, and the two should not be
mistaken.
Despite being presented in this book in a dedicated section, the main recom-
mendation is not to use it, if at all possible. There are far better alternatives,
for any possible scenario. Some argue that such a method is the only one possi-
ble when transforming Likert type response scales (therefore ordinal measured
data) to fuzzy values, and indeed the direct and the indirect methods would
not be appropriate in such situations because they both need numerical data
from at least an interval level of measurement. But the final Sect. 4.3 shows
one possible way to deal with such situations.
When presenting the direct assignment, Verkuilen himself (2005, p. 471) men-
tions no less than five main problems associated with this method, and only
for this method (for all the other, transformational assignments, no such prob-
lems are mentioned):
1. The interpretation of the generated set membership values is very difficult
2. The direct assignment is mostly unreliable, especially for very abstract

concepts
3. It contains bias (the expert’s own expertise)
4. There is no error (uncertainty) associated with the generated set member-

ship values
5. Combining the expertise from multiple judges is also difficult
Having presented all this information, the main advice is to refrain from using
the direct assignment. The next sections will introduce the standard calibra-
tion techniques as they are used in the current QCA practice.

74 4 Calibration

4.2.2 Direct Method, the “S-Shape” Functions

This above argument holds for complex multidimensional concepts, but inter-
estingly it also holds for very simple concepts, like age or height. In a Western
culture, suppose we have an average height of 1.75m (roughly 5 ft 9 in), with
a range of heights between a minimum of about 1.5m (an inch below 5 ft) and
a maximum of about 2m (about 6 ft 7 in).
We can simulate a sample of 100 such height values (in centimeters) via these
commands:

set.seed(12345)
height <- rnorm(n = 100, mean = 175, sd = 10)
range(height)

[1] 151.1964 199.7711

This is a normally distributed, random sample of heights where the “tallest”
person has 1.99m and the “shortest” one has 1.51m. It doesn’t display any
large separation for clusters of points, as Fig. 4.5 shows, perhaps with the
exception of the two values on the left side (but since this is randomly gener-
ated data it has no theoretical interpretation). In this example, there are 100
values, and most of them overlap in the middle part of the plot. To have a
more accurate idea of what this distribution looks like, the argument jitter
was activated to add a bit of “noise” on the vertical axis.

Xplot(height, jitter = TRUE, cex = 0.8)

Fig. 4.5 The distribution of generated heights

Now suppose an accepted definition of a “tall” person, for the Western cul-
tures, is anyone having at least 1.85m (at least 6 ft) so anyone above this
threshold would be considered “tall”. Conversely, anyone below 1.65m (5 ft
5 in) would be considered “short”. If these anchors hold, it is now possible to
calibrate the concept of height and transform its raw values into membership
scores for the set of “tall people” using this command:

increasing calibration of height
ich <- calibrate(height, thresholds = "e=165, c=175, i=185")

4.2 Calibrating to Fuzzy Sets 75

It is the same function calibrate(), with two important differences from the
previous section:
1. the argument type needs no special specification (its default value is al-

ready "fuzzy"), to signal we are going to obtain a continuous set of mem-
bership values between 0 and 1

2. the argument thresholds has a different structure, specifying three letters
(“e” stands for complete exclusion, “c” is the crossover point, and “i” is the
threshold for complete inclusion in this set), and three associated numbers
which are the actual threshold values.

As previously mentioned, although this command looks deceptively simple,
there are other arguments “at work” with their default values associated with
the fuzzy calibration. Generating set membership values has to use a math-
ematical function, in this case the default being the logistic distribution due
to the argument logistic = TRUE. Since the logistic distribution has a well
known shape which resembles the letter “S”, package QCA names the re-
sulting values an “s-shape” (to differentiate from “bell-shape” which will be
introduced later in this section).
There is more to tell about these inter-related arguments, because not all of
them are active all the time. They get activated in a logical sequence, once
the first link of the sequence has been activated. In this example, the first
link is the argument type which has been left to the default fuzzy. Only when
this happens, the argument logistic starts to work (for the crisp version it
didn’t have any effect whatsoever), and a third link in the sequence is the
argument idm which depends on both type and logistic, and becomes active
only when the type is fuzzy and logistic is TRUE. If any of the first two has a
different value, the argument idm will stop producing any effect (see Sect. 4.2.3
for details of what this argument is and how it works).
The function is smart enough to detect all these logical sequences of arguments,
but on the other hand the user needs to properly understand how they work
in order to effectively make use of the function.
And this is not the end of the story, for there is even more to tell about the
specification of the thresholds argument:
(a) Whenever the function starts with exclusion and ends with inclusion

thresholds, the function will increase from left to right. That means it
is logically possible to specify a decreasing function, if the specification
is reversed: when it starts with inclusion (for the low raw values on the
left) and ends with exclusion (for the large raw values on the right), the
function will be decreasing from left to right.

(b) If thresholds contains exactly three values, it signals the use of the “s-
shaped” functions, and if it uses exactly six values, it signals the use
of the “bell-shaped” function (see Sect. 4.2.4). For fuzzy calibration, any
other number of thresholds will generate an error.

76 4 Calibration

Therefore we can create the set membership in the set of “short” people by
simply changing the order of the thresholds from left to right, noting the
thresholds’ values are always increasing from left to right, as we move from
the smaller raw values on the left of the distribution towards the larger raw
values on the right side of the distribution:

decreasing calibration of height
dch <- calibrate(height, thresholds = "i=165, c=175, e=185")

Figure 4.6 presents two plots of raw versus their correspondent calibrated val-
ues, in the distinctive, increasing s-shape fuzzy set on plot (a) and decreasing
s-shape fuzzy set on plot (b).
The horizontal axes correspond to the raw data (ranging from 1.5 to 2.0m in
height), and the vertical axes have membership scores in the set of “tall” and
“short” people, ranging from 0 to 1. Each initial value has been transformed
into a membership degree, but unlike the crisp version(s) where the raw data
got recoded to small number of new values, in this case each value has its own
degree of membership, along the logistic function starting from the small raw
values on the left and progressively going towards the large raw values on the
right.

par(mfrow = c(1, 2))
plot(height, ich, main = "a. Set of tall people", xlab = "Raw data",

ylab = "Calibrated data")
plot(height, dch, main = "b. Set of short people", xlab = "Raw data",

ylab = "")

a b

Fig. 4.6 Calibration using the logistic function. (a) Set of tall people. (b) Set of short
people

4.2 Calibrating to Fuzzy Sets 77

In Fig. 4.6a, tall people should have a higher inclusion in the set than short
people, therefore the function increases from 0 in the lower left side to 1 in
the upper right side, such that a person standing 1.5m in height will have a
0 inclusion score in (or completely out of) the set of “tall” people.
The opposite situation can be seen in Fig. 4.6b, where it seems natural for
tall people to have low inclusion scores in the set of “short” people, therefore
the shape of the function decreases from 1 in the upper left side to 0 in the
lower right side (an inverted s-shape function), such that a person standing
2m tall would have a 0 inclusion score in (or completely out of) the set of
“short” people.
Before going too deep into the specificities of how the logistic function is used
to obtain these membership scores, let us return to the original discussion
about the differences between cultures. The exclusion, crossover and inclusion
thresholds of 1.65, 1.75 and 1.85 are valid for the Western context, but would
not produce the entire range of values between 0 and 1 for an Eastern context.
Suppose there is a hypothesis relating height to labor market outcomes (Per-
sico et al. 2004), or to the general wellness and quality of life (Bolton-Smith
et al. 2000). It would not make any sense to use the same threshold values
for all countries in a comparative study. The average height in a country like
Korea is much lower than the average in a Western country like France (not
to mention Sweden), therefore using the same thresholds would cluster most
of the calibrated membership scores to the lower left part of the plot.
The goal of the calibration process is to obtain membership values for the
full range from 0 to 1, for each and every compared country, according to
the meaning of the concept for each particular country of culture. “Tall” has
a very different meaning for tribes in Guatemala (Bogin 1998), where the
average height in the 1970s was reported for the Mayan men to about 1.575m
(5 ft 2 in). In order to obtain the full range between 0 and 1, is it mandatory to
use a different set of thresholds values for exclusion, crossover and inclusion
in the set.
As each country has a different set of thresholds, establishing the exact val-
ues for each set doesn’t have anything to do with mathematics or statistics.
Rather, is has everything to do with the researcher’s familiarity with each
studied country, which is a qualitative, rather than quantitative approach to
research. The researcher has to know and to understand the “meaning” of
each concept for each particular country, and this cannot be mathematically
derived from separate random samplings from every studied country.
In this example the individual cases represent people’s heights, but the same
line of thought can be applied in the situation when cases represent whole

4.2 Calibrating to Fuzzy Sets 79

Figure 4.7 shows the corresponding dialog for the fuzzy calibration in the
graphical user interface, using the raw values from the Lipset dataset LR. It
is the same dialog, but displaying only the controls specific to fuzzy calibration.
This demonstrates the logical sequence relations between various arguments
of the calibrate() function, those specific to the crisp version having no effect
when calibrating to fuzzy sets, therefore taken out of the picture. Previously,
the thresholds setter was specific to the crisp calibration only, but starting
with version 2.5 this reactive area is displayed for fuzzy calibration as well.
In this respect, the graphical user interface has an advantage over the com-
mand line interface, because certain clicks already trigger the logical sequence
of argument relations, saving the user from constantly checking those logical
relations. To add more to the advantages, clicks and their logical implications
are immediately translated to the command constructor (the user interface is
a reactive shiny app, after all), and users learn about these implications by
studying how the perfect logical command looks like, with each click.

calibrate into
new condition DEVC Run

Calibrate

crisp

fuzzy

logistic degree of membership0.95

ecdf

s-shaped

bell-shaped

increasing

decreasing

e
400

c
550

i
900

400 600 800 1000

0

.5

1

LR

DEV
URB
LIT
IND
STB
SURV

Dataset:

Choose condition:

Fig. 4.7 The fuzzy “Calibrate” dialog

In the fuzzy version of the calibrate dialog, it can already be seen that the
s-shaped type of function is predefined (default), increasing from left to right.
Choosing the decreasing in the radio button, will automatically change the
labels of the thresholds and their corresponding command, when all values are
provided. Also, the logistic function is selected by default (a second link in
the logical sequence of fuzzy calibration), and with it the text box specifying
the degree of membership (which depends on both fuzzy and logistic being
checked, the third link in the logical sequence of argument relations).

78 4 Calibration

countries, and the dataset is a collection of values for each individual country.
Ragin’s calibrated values (rounded to two decimals) can be obtained easily via:

inc <- c(40110, 34400, 25200, 24920, 20060, 17090, 15320, 13680, 11720,
11290, 10940, 9800, 7470, 4670, 4100, 4070, 3740, 3690, 3590,
2980, 1000, 650, 450, 110)

incal <- round(calibrate(inc, thresholds = c(2500, 5000, 20000)), 2)

The calibrated values have been rounded to two decimals for an easier com-
parison with Ragin (2008b, p. 89) table and also with the fs/QCA software
which also rounds to two decimals by default. But a good recommendation, for
the purposes of QCA minimization, is to leave all decimals of the calibrated
values intact.
Table 4.1 displays the raw values and their calibrated counterparts, side by
side for each individual country. There are very minor differences from Ragin’s
values (for example Israel), explained in Sect. 4.2.3.

Table 4.1: Per capita income (INC) calibrated (INCAL)

INC INCAL
Switzerland 40,110 1.00
United States 34,400 1.00
Netherlands 25,200 0.98
Finland 24,920 0.98
Australia 20,060 0.95
Israel 17,090 0.91
Spain 15,320 0.88
New Zealand 13,680 0.85
Cyprus 11,720 0.79
Greece 11,290 0.77
Portugal 10,940 0.76
Korea, Rep. 9800 0.72
Argentina 7470 0.62
Hungary 4670 0.40
Venezuela 4100 0.26
Estonia 4070 0.25
Panama 3740 0.18
Mauritius 3690 0.18
Brazil 3590 0.16
Turkey 2980 0.08
Bolivia 1000 0.01
Cote d’Ivoire 650 0.01
Senegal 450 0.00
Burundi 110 0.00

80 4 Calibration

The selector for the number of thresholds was removed from the dialog for
the fuzzy calibration, because unlike the crisp version where the user can
potentially specify any number of thresholds, in the fuzzy calibration this
number is restricted to either 3 (for the s-shaped functions) or 6 (for the bell-
shaped function) and the user is not given any possibility to make a mistake.
Only when all thresholds values have been specified (they can be copied from
the crisp version, if first using the thresholds setter to determine their values),
the command constructor will introduce the thresholds argument in the writ-
ten command, with the associated labels “e” for exclusion, “c” or crossover
and “i” for inclusion.
The last checkbox in the list of dialog options is ecdf, which stands for the
empirical cumulative distribution function. This is different possibility to gen-
erate degrees of membership in particular sets, whenever the researcher does
not have a clear indication that the logistic function has the best possible fit
on the original raw values.
There are many other types of functions that can be employed besides the
logistic function (Thiem and Dus,a 2013; Thiem 2014), which are all special
types of CDFs (cumulative distribution functions) that will be discussed later,
but sometimes researchers don’t have a clear preference for a certain type of
fit function and prefer to let the raw data speak for themselves.
This is the case with the ECDF (empirical CDF) which uses the data itself
to incrementally derive a cumulative function in a stepwise procedure. In
the written command, although arguments logistic and ecdf are mutually
exclusive, it is important to explicitly set logistic = FALSE before making
use of ecdf = TRUE (otherwise the default activated logistic function will have
precedence).

ech <- calibrate(height, thresholds = "e=155, c=175, i=195",
logistic = FALSE, ecdf = TRUE)

Another reason why this setup is important, as it will be shown, is the case
where both logistic and ecdf are deactivated, when a different set of cali-
brating functions will enter into operation. In order to minimize the number
of arguments and reduce complexity, every last drop of logical relations be-
tween arguments has been employed in this function, but it becomes all too
important to understand these relations.
The object ech contains the calibrated values using the ECDF—empirical
cumulative distribution function, which are bounded in the interval between 0
and 1 just like all the other CDFs, with the difference that all values below the
exclusion threshold are automatically allocated to a set membership score of 0,
and all values above the inclusion threshold are allocated to a set membership
score of 1 (unlike the logistic function, where by default “full membership” is
considered to be any membership score above 0.95).

4.2 Calibrating to Fuzzy Sets 81

The following command produces Fig. 4.8.

plot(height, ech, xlab = "Raw data", ylab = "Calibrated data", cex = 0.8)

The points don’t follow a very clear mathematical function line, as is the
case with the perfect shape of the logistical function in Fig. 4.6, but it is
remarkably close if taking into account that the “shape” of the distribution
(if it can be called like that) has been determined from the distribution of the
raw, observed data.

Fig. 4.8 Calibration in the set of tall people, using the ECDF

In the graphical user interface, this seemingly complex relation between ar-
guments is relaxed by the automatic activation or deactivation of the related
arguments, once the starting arguments have been activated. In Fig. 4.7, if the
user clicks on the ecdf checkbox, the logistic counterpart is automatically
deactivated and the command constructor is displays the written command
above. Even more, since the degree of membership text box only makes
sense in relation with the logistic checkbox, when the ecdf is activated the
text box will disappear from the dialog. This way, the user can visually un-
derstand which argument is related to which other, in a logical sequence.
Where both logistic and ecdf are set to FALSE, neither one of these two
CDFs are used and the calibrate function employs the following mathemati-
cal transformation (adapted after Thiem and Dus,a 2013, p. 55):

dmx =

0 if x ≤ e,

1
2

(
e − x
e − c

)b
if e < x ≤ c,

1− 1
2

(
i − x
i − c

)a
if c < x ≤ i,

1 if x > i.

(4.1)

82 4 Calibration

where:
• e is the threshold for full exclusion
• c is the crossover
• i is the threshold for full inclusion
• x is the raw value to be calibrated
• b determines the shape below the crossover (equivalent to argument below)
• a determines the shape above the crossover (equivalent to argument above)
If a raw value is smaller than the threshold for full exclusion, it will be assigned
a degree of membership equal to 0, and the same happens at the other end
being attributed a value of 1 if greater than the threshold for full inclusion.
The interesting part happens in the two areas between the thresholds, and
the shape of the function is determined by the values of a and b:
• if left to their default values equal to 1, the function will be a perfect

increasing line
• when positive but smaller than 1, it dilates the distribution into a concave

shape (a above and b below the crossover)
• when greater than 1, it concentrates the distribution into a convex shape

(same, a above and b below the crossover)
The need for such alternative functions appeared for methodological reasons
(CDFs cannot produce, for example, bell-shaped curves), and it must be said
that researchers commonly misunderstand how the logistic function operates
(the default, and the only calibration function in the fs/QCA software).
When performing calibration to crisp sets, one expects and indeed it is hap-
pening that everything to the left of the threshold to be allocated one value
and everything to the right of the threshold, a different value.
The “threshold setter” acts as a first visual, mind conditioning tool that in
my opinion affects the expectations on how the fuzzy calibration should work.
One such natural expectation is, when establishing a threshold for full set
exclusion, everything below that threshold should be fully excluded from the
set (thus being allocated a value of 0) and when establishing a threshold for
full set inclusion, everything above that would be fully included in the set
(thus being allocated a value of 1).
Contrary to this expectation, Ragin’s procedure considers “fully out” every-
thing with a membership value up to 0.05 and “fully in” everything with a
membership value of at least 0.95. Thus, by using the logistic function, it is
common to have calibrated values that never reach the maximum inclusion of
1, despite the existence of raw values above the inclusion threshold. That is a
bit counter-intuitive, but it makes sense when following Ragin’s logic.
The family of functions from Eq. (4.1) (with respect to the choice of values for
parameters a and b) makes sure that everything outside the two full exclusion
and inclusion thresholds are going to be calibrated accordingly. This sort

4.2 Calibrating to Fuzzy Sets 83

of reasoning holds true if the researcher expects a linear shape, that is all
calibrated values should be lined up against a straight line, with inflexions at
the outer thresholds.
Figure 4.9 shows three possible calibration functions, all using the same set of
exclusion threshold e = 155, a crossover c = 175 and a full inclusion threshold
i = 195.

c1h <- calibrate(height, thresholds = "e=155, c=175, i=195",
logistic = FALSE) # by default below = 1 and above = 1

c2h <- calibrate(height, thresholds = "e=155, c=175, i=195",
logistic = FALSE, below = 2, above = 2)

c3h <- calibrate(height, thresholds = "e=155, c=175, i=195",
logistic = FALSE, below = 3.5, above = 3.5)

plot(height, c3h, cex = 0.6, col = "gray80", main = "",
xlab = "Raw data", ylab = "Calibrated data")

points(height, c2h, cex = 0.6, col = "gray50")
points(height, c1h, cex = 0.6)

Fig. 4.9 Three alternative calibration functions

The distribution with the black colour has both arguments below and above
at their default values of 1 to produce a linear shape. Changing the values of
the two arguments, first at the value of 2 (gray colour in the plot) and next
to a value of 3.5 (the light gray colour in the plot) curves the distribution
progressively, and at the value of 3.5 it is remarkably similar with the logistic
shape (the only difference being that raw values outside the exterior thresholds
have been allocated membership scores of exactly 0 and respectively 1).
For the decreasing type of functions (fully including the low values in the
raw data, and excluding the large ones), the order of the calculations simply
reverses, as shown in Eq. (4.2):

84 4 Calibration

dmx =

1 if x ≤ i,

1− 1
2

(
i − x
i − c

)a
if i < x ≤ c,

1
2

(
e − x
e − c

)b
if c < x ≤ e,

0 if x > e.

(4.2)

When both parameters a and b are equal, a “decreasing” type of function is
the same thing as the negation of an increasing function, and the scores from
Eq. (4.2) can also be obtained by negating (subtracting from 1) the scored
from Eq. (4.1).
Obtaining a linear calibrated condition using the graphical user interface is a
matter of deactivating both the logistic and ecdf checkboxes. As the argu-
ment idm and its text box depend on the activated logistic checkbox, it has
been removed from the dialog as shown in Fig. 4.10. Two new controls have
appeared instead, that control the shape of the calibration function: above
and below (the equivalents of the a and b parameters from (4.2).
They control whether the shape between the thresholds is linear (when they
are equal to 1) or gain a certain degree of curvature, either above of below
the crossover threshold. When below has a value between 0 and 1, the curve
dilates in a concave shape below the crossover, and when it has values above
1 it concentrates in a convex shape below the crossover. The same happens
with the other control, only above the crossover.
Mathematically, both can have negative values, but the results are unexpected
and the shape is meaningless, therefore in package QCA they have been
restricted to positive values.

calibrate into
new condition DEVC Run

Calibrate

crisp

fuzzy

s-shaped

bell-shaped

increasing

decreasing

e
400

c
550

i
900

LR

DEV
URB
LIT
IND
STB
SURV

Dataset:

Choose condition:

400 600 800 1000

0

.5

1

logistic

ecdf
Shape form:

above

below

1

1

Fig. 4.10 Linear fuzzy calibration dialog

4.2 Calibrating to Fuzzy Sets 85

In theory, the choice of calibration functions should not be a matter of per-
sonal taste or aesthetics, and Thiem (2014) speculates that it might affect
the coverage of the calibrated causal condition on the outcome. However, in
practice there is no empirical evidence that calibration functions dramatically
alter the final minimization results in QCA, using the same set of calibration
thresholds. If the final solutions are identical, irrespective of the calibration
functions, the default logistic one should be the simplest to use for most QCA
applications.

4.2.3 How Does It Works: The Logistic Function

Ragin’s idea to use the logistic function for calculating the degree of mem-
bership is a very clever one. He adapted a mathematical transformation to
the set theory, starting with the observation that both probability (specific
to mathematics and statistics) and the degree of membership (specific to set
theory) are ranging in the bounded interval from 0 to 1.
Probability and set membership are very different things, as Ragin (2008b,
p. 88) rightly points out. To demonstrate how this adaptation works, I am
going to start from the definition of a simple mathematical transformation
of the probability, called “odds”. In the binomial distributions there are two
simple concepts which contribute to the calculation of the odds, namely the
probability of success (p) and the probability of failure (q), where the following
equation happens: p + q = 1, and it’s counterpart is also intuitive: p = 1 - q.
In plain language, the probability of success p is the complement of (1 minus)
the probability of failure q, and vice-versa. The odds are simply the ratio
between the two probabilities:

p

q
= p

1−p

One particularity of the odds is the fact they are non-negative, ranging from
a minimum value of 0, which happens when p = 0, to a maximum value of
plus infinity which happens when p = 1. To allow the full range from minus
to plus infinity, statistics uses the so called “log odds”, which is the natural
logarithm of the odds1:

ln
(p

1−p

)

1 This term should not be confused with the log odds in the logistic regression (aka
“logit”), that is the natural logarithm of the “odds ratio”.

86 4 Calibration

When p = 0 the log odds is equal to −∞; when p = 1 the log odds is equal to
+∞, and when p = q = 0.5 the log odds will be equal to zero. This observation
will play an important role in the process of calibration to set membership
scores.
Ragin adapted the log odds to set theory by replacing the probability of
success with the degree of membership (argument idm in function calibrate),
which is also ranging from 0 to 1 so that the log odds is now equal to:

ln
(dm

1−dm

)

Similar to the probability model, there is a mathematical “direct” relation
between any degree of membership in a set and its associated log odds (likely
the reason why Ragin called this transformation the “direct method”). When-
ever the degree of membership idm is known, their associated log odds can
be calculated by a direct transformation, but most importantly knowing the
value of the log odds allows calculating the degree of membership, which is
the purpose of the calibration process.
It all boils down to calculate the equivalent of the log odds for any particular
raw value, and the degree of membership can be mathematically calculated.
This is precisely what the fuzzy calibration does, using the logistic function.
In his example with the per capita income, Ragin employs the following pro-
cedure:
1. establish the thresholds: 20,000 for full inclusion, 5000 for crossover and

2500 for the full exclusion from the set of developed countries
2. calculate the deviation of each raw value from the crossover, where values

above that threshold will be positive, and values below will be negative.
3. calculate the ratio between the log odds associated with full membership

(3) and the distance between the full inclusion and crossover thresholds
(15,000), for the positive deviations from the crossover: 3/15,000 = 0.0002

4. calculate the ratio between the log odds associated with full exclusion
(−3) and the distance between the full exclusion and crossover thresh-
olds (−2500), for the negative deviations from the crossover: −3/−2500
= 0.0012

5. calculate the equivalent log odds for each raw value of per capita income,
multiplying each deviation from the crossover with the scalar resulting
from step 3 or step 4, depending if the deviation is positive of negative

6. mathematically derive the degree of membership out of the calculated log
odds.

For example the case of Israel, which has a per capita income of 17,090 USD
and a deviation from the crossover equal to 12,090 USD. This deviation should
be multiplied with 0.0002 to obtain the associated log odds of 2.42, and the
degree of membership can be mathematically derived, cancelling out the effect
of the logarithm by using the exponential function:

4.2 Calibrating to Fuzzy Sets 87

ln
(dm

1−dm

)
= 2.42

that is equivalent to:
dm

1−dm
= e2.42

and finally the degree of membership is trivially extracted:

dm= e2.42

1+e2.42
≈ 0.92

The value of 0.92 (in fact 0.9183397 rounded to two decimals) is what the
calculation arrives at, and is exactly what the fs/QCA software outputs
for Israel. Using some mathematical tricks specific to the logistic function
combining the natural logarithm and the exponential function, the same value
can be obtained in a single step calculation:

dm= 1
1+e− 12090×3

15000
= 1

1+e−2.42 ≈ 0.92

However, there is a very slight approximation introduced by Ragin (2008b,
p. 90) in his calculations, when referring to:

. . . cases with per capita income of $20,000 or greater (i.e. deviation scores of
$15,000 or greater) are considered fully in the target set, with set membership
scores >= 0.95 and log odds of membership >= 3.0

Actually, for a set membership score of 0.95 the exact value of the log odds
is 2.944439, or the other way round for a log odds value of 3 the exact set
membership score is 0.9525741. However there is no direct, mathematical re-
lation between the set membership score of 0.95 and the log odds value of
3. Keeping 0.95 as the fixed set membership score for full set inclusion, the
calculation becomes:

dm= 1
1+e− 12090×2.944439

15000
= 1

1+e−2.373218 ≈ 0.91

The function calibrate() in package QCA offers the argument idm (inclusion
degree of membership) which has a default value of 0.95, thus deriving the
exact value of the log odds for each particular raw value. In the vast majority
of situations, the results between fs/QCA and the R package QCA are iden-
tical but in very few situations, due to the difference between approximate
versus exact values, there are very slight differences, for example Israel where
the exact calculated value is 0.9147621, and rounded to two decimals becomes
0.91 as opposed to the value of 0.92 presented by Ragin. These kinds of dif-
ferences, however, are insignificant with respect to the overall, calibrated set
membership scores.

88 4 Calibration

4.2.4 Direct Method, the “Bell-Shape” Functions

A cumulative distribution function is not the universal answer for all calibra-
tion questions. There are situations when the problem is less about which
calibration function to choose, but more with the fact that a CDF like the
logistic function is simply unable to perform calibration for certain types of
concepts.
All previous examples refer to calibration functions which always end in the
opposite diagonal corner of where they started. If starting from the lower left
part of the plot, it is an increasing function (therefore excluding the low values
and including the large ones from the raw data distribution), and if starting
from the upper left corner it is a decreasing function (including low values
and excluding the large ones from the set). These types of functions are called
monotonic, always increasing or always decreasing to a certain point.
But there are situations where the concept to be calibrated does not refer
to the extreme points of the raw data distribution. Taking Ragin’s example
of the “developed” countries, another possible concept could be for example
“moderately developed” countries. In this definition, Burundi (110 USD) is
clearly out of the set, but interestingly Switzerland (40,110 USD) should also
be out of this set because it is a highly developed country, not a “moderately
developed” one.
Both extremes of very poor and very rich countries should be excluded from
the set of moderately developed ones. So the calibration function should only
include the countries in the middle of the data distribution (the mid points),
excluding the extremes (the end points). Clearly, this sort of calibration cannot
be performed by a monotonic function which is built to include points only
at the extremes. Rather, it should be a non-monotonic function which can
change signs in the middle of the distributions and decrease if previously was
increasing, or increase if previously was decreasing.
This is the very description of a “bell-shaped” function curve, as depicted in
Fig. 4.11, where part a. displays two types of linear calibrations (trapezoidal
with gray colour and triangular with black) that both resemble a “bell”-like
shape, while part b. displays a their “curved” counterparts using the same sets
of thresholds but with different values for the parameters above and below.
Plotting the objects produced with the code below, against the initial height
which contains the initial raw values, will produce Fig. 4.11, using a plot matrix
of 1 row and 2 columns, as in the similar looking Fig. 4.6 (only the objects are
created with these commands, to actually produce the plots readers should
use the plot() and points() functions).

4.2 Calibrating to Fuzzy Sets 89

triang <- calibrate(height, thresholds = "e1=155, c1=165, i1=175, i2=175,
c2=185, e2=195")

trapez <- calibrate(height, thresholds = "e1=155, c1=164, i1=173, i2=177,
c2=186, e2=195")

bellsh <- calibrate(height, thresholds = "e1=155, c1=165, i1=175, i2=175,
c2=185, e2=195", below = 3, above = 3)

trabel <- calibrate(height, thresholds = "e1=155, c1=164, i1=173, i2=177,
c2=186, e2=195", below = 3, above = 3)

Fig. 4.11 Fuzzy calibrations in the set of “average height”. (a) Linear. (b) Curved

Unlike the s-shaped functions which need three thresholds to define the spe-
cific shape, the bell-shaped functions need six. Since the inclusion happens
at the middle of distribution, there are two areas that are excluded, hence
two exclusion points and two associated crossovers. Finally, the two inclusion
points define the exact range which is going to be included. In the code above,
it can be noticed the inclusion points for the triangular shape are equal, which
explains why the shape has a single point in the top middle area.
Based on the (non)equality of the inclusion thresholds, there are only two
main types of bell-shape functions: triangular, with a single point at the top,
and trapezoidal, with a range of points at the top. The other shapes are all
part of this family, with different degrees of curvature based on the values of
above and below arguments.
What is shared by both s-shaped and bell-shaped families of functions, and
it makes the task of defining and identifying the set of thresholds easier, is
the fact their thresholds are specified in ascending order, from left to right.
Whether increasing or decreasing, it does not matter: the thresholds are always
specified in ascending order, in the same logic as a plot of points which is
always drawn from left to right on the x axis, in ascending order.

90 4 Calibration

The key to identify the difference between an increasing and decreasing func-
tion lies in the names of the thresholds: if beginning with an exclusion it means
an increasing function (first excluding the smaller values on the left, then grad-
ually increasing towards the larger values on the right), and if beginning with
an inclusion it means a decreasing function.
This is valid for both s-shapes and bell-shapes alike. In the examples above,
thresholds are all starting from the left with an e to exclude the points on the
left, then increasing towards, and include the middle points, then decreasing
to again exclude the larger values on the right.
The mathematical transformations that define these families of curves are sim-
ilar to the s-shape functions, combining increasing and decreasing equations.

dmx =

0 if x ≤ e1,

1
2

(
e1 − x
e1 − c1

)b
if e1 < x ≤ c1,

1− 1
2

(
i1 − x
i1 − c1

)a
if c1 < x ≤ i1,

1 if i1 < x ≤ i2,

1− 1
2

(
i2 − x
i2 − c2

)a
if i2 < x ≤ c2,

1
2

(
e2 − x
e2 − c2

)b
if c2 < x ≤ e2,

0 if x > e2.

(4.3)

It is easy to see Eq. (4.3), specific to the increasing bell-shape function, is not
much different from Eqs. (4.1) and (4.2).
The equation for the decreasing bell-shape simply reverses the order of trans-
formations for the increasing bell-shape function, but as already mentioned
in the s-shape section, when above is equal to below, a decreasing function is
equivalent to the negation of the increasing one, both in terms of logics (“short”
really means “not tall”), and also mathematically because a decreasing calibra-
tion is the same as negating the degrees of membership for the increasing func-
tion, by subtracting the membership scores from 1. The decreasing bell-shape
function, in this example, means “not average height” which includes both
short and tall people and excludes the middle heights.
If parameters a and b are not equal, then a simple negation is not possible
because the shape of the curve below and above the crossover differs. In this
situation, and generally valid for all situations, the best approach is to apply
the mathematical transformation from Eq. (4.4).

4.2 Calibrating to Fuzzy Sets 91

dmx =

0 if x ≤ i1,

1− 1
2

(
i1 − x
i1 − c1

)a
if i1 < x ≤ c1,

1
2

(
e1 − x
e1 − c1

)b
if c1 < x ≤ e1,

1 if e1 < x ≤ e2,

1
2

(
e2 − x
e2 − c2

)b
if e2 < x ≤ c2,

1− 1
2

(
i2 − x
i2 − c2

)a
if c2 < x ≤ i2,

0 if x > i2.

(4.4)

The corresponding graphical user interface dialog, as seen in Fig. 4.12, is simi-
lar to the previous one but the radio button is now switched to bell-shaped
instead of s-shaped. The user interface automatically creates the six text
boxes where the values of the thresholds are inserted (in ascending order from
left to right).

Run

Calibrate

LR
Dataset:

Choose condition:

crisp

fuzzy

logistic

ecdf

s-shaped

bell-shaped

increasing

decreasing

Shape form:
above

below

1

1

e1
350

c1
500

i1
650

i2
650

c2
800

e2
950

calibrate into
new condition DEVC

DEV
URB
LIT
IND
STB
SURV

0

.5

1

400 600 800 1000

Fig. 4.12 Calibration dialog for the fuzzy set of “average development”

For each value, one threshold is created in the thresholds setter area, and
function of their positions the points display the familiar triangular shape,
given the two inclusion thresholds in the middle are equal. As in the case of
crisp calibration, thresholds can be dragged left and right (or modified directly
in the text boxes), and the vertical position of the points (their associated
degree of membership) is recalculated every time the action is performed.

92 4 Calibration

Once generated, the thresholds are not allowed to move past other thresholds,
in order to maintain a strict order of their associated values, in ascending
order. It should also be mentioned that the thresholds setter area has an
informative role only, the dataset doesn’t get modified until the user presses
the “Run” button.
This makes the thresholds setter highly interactive, and more intuitive for
users who, up until now, were calibrating “blind”: the result was visible only in
the database, but now it is possible to visualize the end result before creating
a new calibrated condition.

4.2.5 The Indirect Method

The indirect method of calibration, although attributing fuzzy set scores in
the target condition, has very little to do with the fuzzy calibration from
the previous sections. It has no anchors, and it doesn’t need to specify a
calibration function to calculate the scores along with.
It implies a rather simple procedure involving two steps: a first one of data
recoding, which is trivially done using the function recode(), and a second
one of a numerical transformation involving both the original, interval level
condition and the recoding from the first step.
In the data recoding step, the task is to first establish the number of categories
to recode to. Ragin (2008b) mentions six such qualitative categories, as seen
in Table 4.2, but this number can be flexible allowing more or sometimes even
less categories.

Table 4.2: Indirect calibration categories

Score
Completely in the set 1.0
Mostly but not completely in the set 0.8
More in than out of the set 0.6
More out than in the set 0.4
Mostly but not completely out of the set 0.2
Completely out of the set 0.0

Using Ragin’s per capita income inc object, the actual recoding is performed
using:

incr <- recode(inc, cuts = "1000, 4000, 5000, 10000, 20000",
values = seq(0, 1, by = 0.2))

4.2 Calibrating to Fuzzy Sets 93

The choice of recoding intervals are arbitrary and used here only to match
Ragin’s qualitative codings, with the same end result.
The next step is to have the computer predict the qualitative codings, based
on the researcher’s own codings. One of the statistical techniques which can
be used for prediction purposes is the regression analysis: having calculated
the intercept and the regression coefficients, for any given value of X (the
independent variable) it is possible to predict the value of Y (the dependent
variable). In this example inc is the independent variable, while the recoded
object incr will play the role of the dependent variable.
There are many types of regression analyses, depending mostly on the struc-
ture of the dependent variable Y, but also on the particular distribution of
points in the scatterplot. For example, if Y is a numerical (interval level)
variable and the scatterplot is linear, then a linear regression would suffice.
But in our example the dependent variable is hardly a genuine interval-level
variable, at least because it only has six unique values (not enough variation)
but also, and perhaps most importantly, because it ranges from 0 to 1, which
would suggest something closer to a logistic regression. That is also not possi-
ble because the dependent variable has to have only two binary values 0 and 1
(round numbers), therefore the most appropriate method to use is a so called
fractional polynomial function.
There is a series of papers discussing these kinds of models (Royston and
Altman 1994; Sauerbrei and Royston 1999), demonstrating very good fitting
capabilities, which is especially useful for this example. For a single indepen-
dent variable (covariate), the fractional polynomial of degree m > 0 for an
argument X > 0 with powers p1 < · · ·< pm is defined as the function:

φm(X;β,p) = β0+
m∑

j=1
βjX

(pj) (4.5)

In a regular polynomial function,X is additively raised to the vector of powers
p until reaching the degree m. In the case of fractional polynomials, there are
two differences:
1. the vector of powers is not restricted to whole numbers, but it is rather

taken from a small predefined vector {−2, −1, −0.5, 0, 0.5, 1, 2, 3}.
2. the round brackets notation (pj) signals a Box-Tidwell transformation

when p= 0, using the natural logarithm ln(X) instead of X0.
In R, there are many ways to calculate fractional polynomials, most notably
using the package mfp designed for multiple covariates. For a single covariate
there is a simpler alternative in the glm() function that can be used to access
the binomial logit family.
Given that all raw values of income per capita are positive, we are only in-
terested in the subset of the special vector {0, 0.5, 1, 2, 3}. But Royston and

94 4 Calibration

Altman also demonstrated that a fractional polynomial of degree 2 is more
than enough to fit the vast majority of data, therefore we are in fact interested
in the subset of the vector of powers {0, 0.5, 1, 2}.
The βj are the regression parameters, so that a fractional polynomial of second
degree with powers p= {0, 0.5, 1, 2} has the very similar, regression like form:
β0+β1 ln(X)+β2X0.5+β3X+β4X2

This equation is specified in the fracpol model:

fracpol <- glm(incr ~ log(inc) + I(incˆ(1/2)) + I(incˆ1)+I(incˆ2),
family = quasibinomial(logit))

This command executes a (quasi)binomial logistic regression with a fractional
polynomial equation, calculating the intercept and the four regression coeffi-
cients, which can be inspected using summary(fracpol).
The rest is a simple calculation of the predicted values, based on the glm
model, using the command predict(fracpol, type = "response"). All this
procedure is already encapsulated in the function calibrate():

cinc <- calibrate(inc, method = "indirect",
thresholds = "999, 4000, 5000, 10000, 20000")

round(cinc, 3)

[1] 1.000 1.000 0.992 0.991 0.957 0.909 0.866 0.817 0.746 0.729 0.714
[12] 0.665 0.548 0.371 0.328 0.326 0.300 0.296 0.287 0.236 0.061 0.035
[23] 0.022 0.004

Here, the first threshold is set to 999 instead of 1000, to make a decision about
Bolivia which has a GDP of exactly 1000. The resulting values are not an
exact match with Ragin’s indirect calibrated ones, but that is understandable
since Ragin fitted his model using all 136 countries while here we only used a
subset of 24, and the implementation of the fracpoly function in Stata might
be different from this attempt.
However these values, even for a small subset of 24 countries, are remarkably
similar to the direct calibrated values and seem to solve some problems, for
example faithfully implementing $20,000 as the threshold for full membership
in the set of developed countries (0.95), correctly separating the fifth country
Australia (0.963) from the sixth Israel (0.886).

4.3 Calibrating Categorical Data

When introducing the concept of calibration in QCA, Ragin (2008a,b) writes
solely about “transforming interval-scale variables into fuzzy sets”, and the
different methods to obtain the equivalent fuzzy set scores.

4.3 Calibrating Categorical Data 95

While Ragin offers plenty of examples but not a formal definition of the cali-
bration process, Schneider and Wagemann (2012, p. 23) are more general and
define calibration as the process of how:

. . . set membership scores are derived from empirical and conceptual knowledge.

This definition is so large, that it can incorporate basically anything, because
empirical and conceptual knowledge is not limited strictly to interval level
data, there are all sorts of knowledge being accumulated from both quantita-
tive, and especially from the qualitative research strategies (after all, the “Q”
from QCA comes from qualitative, not quantitative comparative analysis).
As we have seen, social sciences present two main classes of data: categorical
(composed of nominal and ordinal variables), and numeric (interval and ratio
level of measurement). Calibrating numerical data was covered extensively in
the previous sections, but there is another trend to transform categorical data
into fuzzy sets, and this is often called calibration as well.
The final outcome of the calibration process is a vector of fuzzy, numeric scores.
It is important to underline the focus the attention on the word “numeric”,
because fuzzy scores are proper numbers between 0 and 1.
With respect to nominal variables (pure, unordered categorical data), they can
only be calibrated to crisp sets. It would be impossible to derive continuous,
fuzzy numeric scores for categories such as “urban” and “rural”. These types
of data can be transformed (“calibrated”) into either binary crisp sets, if there
are only two categories, or multi-value crisp sets if there are multiple categories
belonging to a certain causal condition.
Binary crisp sets are the most general type of calibrated data, and virtually
any kind of raw data (qualitative and quantitative alike) can be transformed
to this type of crisp sets. Whether nominal, ordinal, interval or ratio, all of
them can be coerced to 1 and 0 values, characteristic for binary crisp sets.
Interval and ratio type of data have already been discussed: with proper care
when choosing the inclusion thresholds, numeric raw data can be transformed
into either crisp, or fuzzy data using the direct or the indirect methods of
calibration.
The other level of measurement which is still open to discussion, is the ordinal
level of measurement for the raw data. Ordinal variables are categorical, with
a further restriction that categories must be arranged in a certain order.
Some types of ordinal variables, especially those with a very limited number
of values, are also very easy to calibrate. A variable called “traffic lights”
having three categories “red”, “yellow” and “green” (in that particular order,
or reversed, but yellow is always in the middle) is still a very clear categorical
variable which can only be calibrated to a multi-value crisp set having three
values: 0, 1 and 2, where 0 could mean a complete stop of vehicle movement
(“red”), 1 could mean to prepare to stop and slow down speed (“yellow”) and
2 could mean move ahead freely (“green”).

96 4 Calibration

It would not make any sense, and would not serve any practical purpose to
transform this type of raw ordinal variable into a pure fuzzy set having values
0, 0.5 and 1 (for many reasons, including the fact that calibration should
always avoid the value of 0.5, with more details in the next chapter).
Values 0, 1 and 2 are just as good, and one can find all sorts of necessity and
sufficiency claims with respect to one of these values and a given outcome, for
example producing and accident or not.
The only type of ordinal data which can potentially be confusing are the
Likert-type response scales. These are also categorical, but many researchers
seem to have little reservations to calculate central tendency measures such
as the mean or standard deviation, typically used for numeric data only.
Although categorical, response values from the Likert type scales are often
treated as if they were interval numbers. While I believe this is a mistake, it is
a completely different topic than calibration. Especially for a low number of
values (there are Likert type response scales with as little as four categories),
treating the values as numbers is difficult in general, and it represents an even
bigger difficulty for calibration purposes.
But there are two other, major reasons for which calibrating Likert scales is
difficult. The first one is related to the bipolar nature of the Likert response
scales. While fuzzy sets are unipolar, for example satisfaction, in the case of
Likert response scales they are usually constructed from a negative end (1.
Very unsatisfied) to a positive end (5. Very satisfied).
A mechanical transformation of a bipolar scale into a uni-dimensional set is
likely to introduce serious conceptual questions, as there is no logical reason
for which the end “very unsatisfied” should be treated as the zero point in the
set of “satisfaction”. Of course, a very unsatisfied person is certainly outside
the set of satisfied people, but so can be argued about the mid point (3.
Neither, nor) on a five values Likert scales, where only the last two values
refer to satisfaction: 4. Satisfied and 5. Very satisfied.
In set theory, satisfaction and dissatisfaction can be treated as two separate
sets, rather than two ends of the same set. A person can be both satisfied and
unsatisfied in the same time, despite the fact that a single response is given
for a Likert type scale.
Exploring the robustness of QCA result applied to large-N data, Emmenegger
et al. (2014) used the European Social Survey data wave 2002/2003 to study
the attitudes towards immigration in Germany. They have proposed a method
to transform a five points Likert type response scale into fuzzy set scores, using
exactly this technique to consider values 1, 2 and 3 more out of the set, and
values 4 and 5 more in the set (in between defining a region of indifference,
as a qualitative anchor point), thus exposing the analysis to the arguments
above.

4.3 Calibrating Categorical Data 97

A second, perhaps even more important reason for which Likert type data is
difficult to be calibrated as if they were interval, is the fact that many times
responses are skewed towards one of the ends. Either in situations where
respondents avoid extremes (thus concentrating responses around the mid
point), or in situations where people avoid the negative end (thus concentrat-
ing responses towards to positive half of the scale), it is possible to find that
most responses are clustered around a certain area of the scale. Rarely, if ever,
are responses uniformly distributed across all response values.
When responses are mostly clustered (skewed) around three values instead of
five, they can easily be calibrated to a multi-value crisp set, but even with five
evenly distributed values, it is still possible to construct a such a multi-value
crisp set. More challenging are Likert type response scales with more than
five values, most often from seven values and up, because at this number it
gets increasingly difficult for respondents to think in terms of categories, the
distance between values becoming apparently equal.
Skewness is a serious issue that needs to be addressed, even for a seven values
Likert response scale. Theoretical knowledge does not help very much, first
because such response scales are highly dependent on the specification of the
extremes ends (for example, something like “Extremely satisfied” is surely
different from “Very satisfied”), and second because there no real guarantee
that a particular choice of wording has the same meaning in different cultures.
In any situation, transforming ordinal data into numeric fuzzy scores is highly
problematic, and enters a challenging territory even for the quantitative re-
search. To claim that qualitative research can do a better job than its quan-
titative counterpart, in creating numeric scores is questionable to the very
least.
That being said, in a situation where the Likert response scale is large enough
(at least seven points), and the responses are more or less evenly distributed
across all values, there might be a straightforward method to obtain fuzzy
scores from these categorical response values, combining from the quantitative
research strategy but insufficiently explored for QCA purposes.
In a study addressing the fuzzy and relative poverty measures, Cheli and
Lemmi (1995) seek to analyze poverty in a multidimensional perspective.
Their work is relevant because poverty studies have to categorize respondents
into poor and non-poor, which is a very similar approach to the fuzzy calibra-
tion. For this objective, they propose a method called TFR (totally fuzzy and
relative) based on rank orders, thus applicable to both ordinal and interval
levels of measurement.
The TFR technique uses an empirical cumulative distribution function on the
observed data, and it is best suited to interval level data (a situation already
covered by the function calibrate(), activating the argument ecdf = TRUE).
However, when data is categorical (even skewed), they propose a normalized

98 4 Calibration

version by applying a simple transformation to create a membership function
that outputs scores between 0 and 1.
The formula below is an adaptation of their function, restricted to values
equal to 0 or above, to make sure it can never output negative values (a safety
measure also employed by Verkuilen 2005):

TFR=max

(
0, E(x)−E(1)

1−E(1)

)

E() is the empirical cumulative distribution function of the observed data,
and the formula basically calculates the distance from each CDF value to the
CDF of the first value 1 in the Likert response scale, and divide that to the
distance between 1 (the maximum possible fuzzy score) to the same CDF of
the first value 1 in the same Likert response scale.
To demonstrate this with the R code, I will first generate an artificial sample
of 100 responses on a seven points response scale, then calibrate that to fuzzy
sets using the method just described.

generate artificial data
set.seed(12345)
values <- sample(1:7, 100, replace = TRUE)

calculate the ECDF
E <- ecdf(values)

calculate the fuzzy scores
TFR <- pmax(0, (E(values) - E(1)) / (1 - E(1)))

the same values can be obtained via the embedded method:
TFR <- calibrate(values, method = "TFR")

The object TFR contains the fuzzy values obtained via this transformation:

table(round(TFR, 3))

0 0.151 0.314 0.477 0.605 0.814 1
14 13 14 14 11 18 16

The fuzzy values resulted from this transformation are not mechanically
spaced equally between 0 and 1, because they depend on the particular distri-
bution of the observed data. This is very helpful, giving guaranteed suitable
fuzzy scores even for highly skewed data coming from ordinal scales.

Chapter 5
Analysis of Necessity

Social phenomena have complex causal configurations. While researchers can
advance various hypotheses about how these phenomena are produced, their
complete causal mix will probably never be completely understood.
While all causes have an impact in the causal structure, some causes are more
important than others. Some are so important, that the outcome doesn’t hap-
pen in their absence. They might not be sufficient to trigger the outcome on
their own, but they are important enough to be a necessary part of the causal
mix: whatever the causal combination it contains, the mix will always contain
those necessary conditions. From Skocpol’s (1979) book on social revolutions,
we could derive the following statement: a social revolution (Y) is produced
only in the context of a state break down (X). If the state break down would
not exist, the social revolution could not be produced; it means the state
break down is a necessary (although not always sufficient) cause of a social
revolution:

X ⇐ Y

5.1 Conceptual Description

This line of reasoning is valid for all types of sets: binary crisp, multi-value
crisp and fuzzy. They can all be graphically represented by a subset/superset
relation, as shown in Fig. 5.1.
A necessary set X is a superset of an outcome set Y, which means X is present
in all instances where Y happens. Because Y is completely included in X,
there is no single instance of Y to be present and X to be absent. There are
situations where X is present and Y is not, but the situations where Y is
present all happen within the situations where X is present, therefore X is a
necessary condition for Y.

© Springer International Publishing AG, part of Springer Nature 2019
A. Dus,a, QCA with R, https://doi.org/10.1007/978-3-319-75668-4_5

99

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-75668-4_5&domain=pdf
https://doi.org/10.1007/978-3-319-75668-4_5

100 5 Analysis of Necessity

Y

X

Fig. 5.1 X ⇐ Y: causal condition X necessary for the outcome Y

The sign “⇐” does not imply any causal direction. Although it looks like
an arrow, the sign implies nothing about Y causally leading to X, but it is
translated to a logical implication: whenever Y happens, X is present as well.
Braumoeller and Goertz (2000, p. 846) present two complementary definitions
about necessity:

Definition 5.1. X is a necessary condition for Y if X is always present when Y
occurs.

Definition 5.2. X is a necessary condition for Y if Y does not occur in the absence
of X.

In terms of set theory, and in line with the Euler/Venn diagram above, Goertz
(2006a, p. 90) supplements with a third, equivalent definition:

Definition 5.3. X is a necessary condition for Y if Y is a subset of X.

There are other types of graphical or tabular representations of necessity, that
tell the same story. The simplest one, that involves binary crisp sets, is a 2 × 2
crosstable to demonstrate the difference between correlation and set necessity
relation.

Table 5.1 Correlation (left) and necessity (right)

Y

0

0

1

1
X

Y

0

0

1

1
X

370

35 0

0 37

35 23

5.1 Conceptual Description 101

In Table 5.1, the left side speaks the language of statistics, where the most
important numbers are located on the main diagonal. It shows a perfect cor-
relation, because there are no cases on the other diagonal. On the right side,
the correlation is broken because of the 23 cases on the other diagonal, but
a different kind of (set) language is spoken: given there are no cases where Y
is present and X is absent, the set corresponding to Y is completely included
within the set corresponding to X, which leads to the conclusion that X is a
necessary condition for Y.
The set of X is bigger than the set of Y, containing 60 cases compared with
only 37 in Y. Out of those 60 cases, 23 are the ones where X is present but
outside of Y (where Y is absent), making the crosstable tell the same story as
the one from Fig. 5.1.
Unlike correlation, sets are asymmetric. If a condition X is necessary for Y,
the same relation does not automatically holds for their absence. It is not
mandatory for the absence of X to be a necessary condition for the absence
of Y (∼X ⇐ ∼Y), and most often there is another causal condition Z, which
is necessary for the absence of Y:

Z ⇐ ∼Y

For this reason, the analysis of necessity should be performed separately for
the presence of the outcome Y and for its absence.
To have some words surrounding the numbers in the 2 × 2 table, we can
employ Goertz’s (2003, p. 49) very good example for the relation between
economic development as condition X and democracy as outcome Y, with the
following insightful distinction between a hypothesis based on correlation and
another hypothesis based on set necessity:
• the higher the level of economic development, the more likely a country is

a democracy
• a minimum level of economic development is necessary for democracy
These are two hypotheses combining the same concepts, but in very different
settings. The first one says democracies are bound to happen where the level
of democracy is large enough. In practice, however, there are countries where
the level of development is large but they did not develop democracies. This
kind of contradiction is difficult to explain using correlations, but it makes
perfect sense when thinking about set necessity relations: it is true there are
nondemocratic countries where there is a large enough level of economic devel-
opment, but on the other hand there is absolutely no instance of democracy
where the level of economic development is very weak.
This empirically observed, asymmetric nature of set relations, can further be
extended to demonstrate the necessity relation does not hold for the absence
of democracy: there are indeed nondemocratic countries that do not have a

102 5 Analysis of Necessity

minimal level of economic development (which would seem to support the
hypothesis ∼X ⇐ ∼Y), but there are also nondemocratic countries that are
doing very well from an economic point of view.
The lack of economic development is not a necessary condition for the lack
of democracy, which is explained by different other factors (an alien conclu-
sion from a statistical, correlational point of view). Statistical methods try to
explain the outcome (dependent variable) using a single model for both high
and low values of the dependent variable, while QCA finds multiple causal
combinations that lead to the same outcome (equifinality).
Necessity relations can be extended from binary to multi-value crisp sets,
using the same overall method. In fact, since a binary crisp set is a particular
case of a multi-value crisp set with two values, the necessity relation X ⇐ Y
can also be written (using standard multi-value notation) as:

X{1} ⇐ Y

meaning that X is a necessary condition for Y when it takes the value of 1 (i.e.,
for binary crisp sets, where it is present), if and only if there is no instance of
Y being present where X = 0 (X is absent).
Multi-value sets can have more than two values, but the same explanation
holds for any one. Assuming a set X has three values (0, 1 and 2), then X{2}
is a necessary condition for Y (Fig. 5.2) iff:
• all cases of Y being present are included in the set of X = 2, and
• there is no instance where Y to be present outside the area where X = 2

(outcome Y is present only where X = 2, and nowhere else)

Y

X{1} X{2}

Fig. 5.2 X{2} ⇐ Y: causal condition X is necessary for Y when equal to 2

5.1 Conceptual Description 103

Such a perfect set inclusion (of Y into X, all democracies have a minimum
level of economic development) is also very rare to observe. In reality, there
are some countries which develop democracies, despite having a very weak
level of economic development.
This is a situation where fuzzy sets prove their usefulness, for it is less im-
portant to have absolutely all cases in Y included in the set of X, but more
important to have a high percentage of cases of Y inside X (higher than a
certain threshold). In classical crisp sets, a single case of Y happening outside
of X can undermine the entire necessity claim. But in a situation where this
single case would be compared with another 100 cases of Y happening within
X, wouldn’t this be an overwhelming (albeit not complete) evidence that X is
necessary?

X

Y

Fig. 5.3 Almost but not complete inclusion of Y into X

Figure 5.3 shows such a situation, where the vast majority of Y cases are
included in X, and a few are outside. Y is still included in X, although not
completely, but the inclusion is high enough to conclude that X is a necessary
condition for Y.
The small part of Y outside of X is the upper left cell of the 2 × 2
crosstable (Table 5.1). If equal to zero, Y would be completely included in
X, and the more cases appear in that cell, the more Y goes outside.
When crisp sets are involved, it is easy to think in terms of number of cases
for each cell of the crosstable. But Fig. 5.3 can also be specific to fuzzy sets,
since the inclusion itself is not only “in” or “out”, but more or less in (or more
or less out).
The inclusion score (its calculation will be introduced in the next section), is
any number between 0 (completely outside) and 1 (completely inside), and
this is the very essence of a fuzzy set, where the fuzzy scores themselves are
numbers between 0 and 1.

104 5 Analysis of Necessity

When dealing with an infinite number of potential values between 0 and 1,
a crosstable between X and Y becomes impossible. For fuzzy sets, necessity
relations are not a simple matter of 0 cases in the upper left cell, but a matter
of having the fuzzy scores of X higher than the fuzzy scores of Y.
Crosstables are useful for categorical variables (any crisp value can be consid-
ered a category), and cases can be counted for each cell of the table. Fuzzy sets
are continuous numeric variables, and that kind of data is best represented
using a scatterplot, which in QCA jargon is called an XY plot.
When fuzzy scores of X are larger than the fuzzy scores of Y, the points are
located in the lower right part of the XY plot. In a way, this is similar to a
crosstable, where necessity means there are zero cases in the upper left cell,
while in the XY plot necessity means zero points in the upper left part, above
the main diagonal.

Fig. 5.4 Fuzzy necessity

Figure 5.4 is a classical example of a fuzzy necessity relation, and relate the
same story of Y being completely included within X, given that all Y scores
are lower than X scores (i.e. all points are located below the main diagonal, in
the greyed area), and it corresponds to the Euler/Venn diagram in Fig. 5.1.
If some of the Y values would be greater than corresponding values in X, they
would be found outside the greyed area, above the main diagonal, and would
correspond to the Venn diagram in Fig. 5.3. To maintain the necessity relation,
it is important to have not more than a few cases above the diagonal, or in
other words, the proportion of cases below the diagonal has to be very large,
or at least larger than a certain threshold.

5.2 Inclusion/Consistency 105

5.2 Inclusion/Consistency

The term “inclusion” means exactly what the Fig. 5.3 displays: the proportion
of the set Y that is included in the set X. It has quite a natural interpretation
in terms of fuzzy sets (different from either included or not, but rather more
or less included), although for fuzzy sets there are better graphical represen-
tations in terms of XY plots.
For the binary crisp case, a 2 × 2 table can be represented using a general
case (Table 5.2).

Table 5.2 General 2 × 2 table for necessity

Y

0

0

1

1
X

b d

a c

The focus, for the analysis of necessity, is on the cells a and c and the inclusion
score is simply calculated with the formula:

inclNX ⇐ Y = X ∩ Y
Y = c

a+c

This should be read as the intersection between X and Y (both happening,
equal to 1 in cell c), out of the total set Y.
There are multiple ways to calculate this inclusion score in R. Given two binary
crisp objects X and Y, the simplest form to calculate is using this command:

sum(X & Y)/sum(Y)

To demonstrate, we will load the crisp version of the Lipset data, which has
the following conditions: DEV, URB, LIT, IND, STB and SURV.
Before going into more details, a complete information about this dataset (and
other datasets shipped with the package QCA), as well as about individual
conditions and outcome can be obtained by typing ?LC or help(LC) on the R
command prompt.
Alternatively, in the graphical the help page can be reached by clicking the
“Help” button in the dialog Load data from attached packages, as shown
in Sect. 2.4.8.

106 5 Analysis of Necessity

Suppose we want to test the necessity of causal condition URB for the outcome
SURV, with the following cross table:

data(LC)
with(LC, table(SURV, DEV))

DEV
SURV 0 1

0 8 2
1 0 8

There are eight cases of SURV happening, and for all of them DEV is happen-
ing as well (the R table prints the data from top to bottom, so the relevant line
is the one below). The inclusion of the outcome SURV in the causal condition
DEV is then:

with(LC, sum(DEV & SURV) / sum(SURV))

[1] 1

The logical operator “&” can be employed to calculate the intersection, because
binary values are interpreted by R as logical vectors. It assumes of course that
both the condition and especially the outcome, are binary crisp sets.
But package QCA has a dedicated function called pof(), with a default value
of the argument relation = "necessity", which calculates the same thing but
with more information which will become relevant later:

pof("DEV", "SURV", data = LC)

inclN RoN covN

1 DEV 1.000 0.800 0.800

This is a situation where a single condition is necessary for the outcome, with
a complete inclusion of the set SURV (survival of democracy) into the causal
condition DEV (level of development). The function pof() accepts another
straightforward way to ask for this necessity relation, using the left arrow
“<=” relation:

pof("DEV <= SURV", data = LC)

inclN RoN covN

1 DEV 1.000 0.800 0.800

For multi-value conditions, the procedure is quite similar. Since the conditions
are also crisp, they can form crosstables with as many columns as the number

5.2 Inclusion/Consistency 107

of values in the causal condition, while the region of interest remains the same:
the row where outcome Y is present with the value of 1 (Table 5.3).

Table 5.3 General crosstable for multi-value necessity

Y

0

0

1

1
X

c

d

e

f

a

b

2

The inclusion score for each of the values in X (seen as quasi-separate sets, as
it was presented in Fig. 5.2), has a very similar calculation method as the one
for binary crisp sets:

inclNX{v} ⇐ Y = X{v} ∩ Y
Y

It is the intersection between the outcome set Y with the (sub)set formed by
a specific value v of the condition X, out of the total number of cases where
Y it is present. For example, to calculate the necessity of value 2 of X for the
outcome Y, we can calculate the necessity inclusion by dividing the cell e and
divide it by the sum of all cells where Y is present:

inclNX{2} ⇐ Y = e
a+c+e

As a practical example, the Lipset data has a multi-value version:

data(LM)
with(LM, table(SURV, DEV))

DEV
SURV 0 1 2

0 8 2 0
1 0 3 5

Calculating the necessity inclusion for the set corresponding to condition DEV
equal to 2, can be done either with:

with(LM, sum(DEV == 2 & SURV) / sum(SURV))

[1] 0.625

or with:

108 5 Analysis of Necessity

pof("DEV{2} <= SURV", data = LM)

inclN RoN covN

1 DEV{2} 0.625 1.000 1.000

There are five cases for DEV equal to 2 where SURV is present, but they do
not account for all cases where SURV is present. There are three other cases
when DEV is equal to 1, and for this reason none of the multiple individual
values of DEV are necessary for SURV.
For fuzzy sets, the calculation method differs (there are no cross-tables to get
the number of cases from), but the spirit of the method remains the same. In
fact, as we will see, the formula for fuzzy sets can be successfully employed
for crisp sets, with the same result.
The Euler/Venn diagrams from Fig. 5.1 or 5.3 are tale telling for all variants,
crisp and fuzzy. The necessity inclusion is the proportion of Y in the intersec-
tion between X and Y.
Section 3.3.2 introduced the fuzzy intersection and the dedicated function
fuzzyand(). For exemplification, the fuzzy version of the same Lipset data
will be used:

data(LF)
with(LF, sum(fuzzyand(DEV, SURV)) / sum(SURV))

[1] 0.8309859

This is a command very similar to those from the crisp sets, and the result is
confirmed by the general use pof() function:

data(LF)
pof("DEV <= SURV", data = LF)

inclN RoN covN

1 DEV 0.831 0.811 0.775

The function fuzzyand() is universal and it can successfully replace the “&”
operator from the binary crisp version:

with(LC, sum(fuzzyand(DEV, SURV)) / sum(SURV))

[1] 1

as well as from the multi-value crisp version, when DEV is equal to 2:

5.2 Inclusion/Consistency 109

with(LM, sum(fuzzyand(DEV == 2, SURV)) / sum(SURV))

[1] 0.625

This demonstrates that a general fuzzy version for the necessity inclusion
equation can be used for both crisp and fuzzy sets:

inclNX ⇐ Y =
∑

min(X, Y)∑
Y

As intuitive as it seems, this formula works counter-intuitive to a Venn dia-
gram. If the set Y has a 0.7 inclusion in a condition X, we would expect the
set Y to be 0.3 outside (excluded from) the set X.
For crisp sets it works, but contrary to this expectation fuzzy sets can have
surprisingly high “inclusions” in both X and ∼X.

Table 5.4 Fuzzy intersections

X Y X*Y ∼X*Y
0.30 0.20 0.20 0.20
0.50 0.40 0.40 0.40
0.55 0.45 0.45 0.45
0.60 0.50 0.50 0.40
0.70 0.60 0.60 0.30

2.15 2.15 1.75

Table 5.4 presents hypothetical values for a condition X and an outcome Y,
with the intersections X*Y and ∼X*Y. Using the fuzzy version of the formula,
the necessity inclusion for X is 2.15/2.15 = 1, and the necessity inclusion for
∼X is 1.75/2.15 = 0.814.
Normally, we do not expect a set to be “included” this much in both X and
∼X, thus questioning the term “inclusion” which is more accurately referred
to as “consistency”. Using this alternative term, it makes sense to think of
both X and its negation ∼X as being consistent with Y in terms of necessity.
This situation is called a simultaneous subset relation and is a feature of fuzzy
sets, which allow an element to be partially consistent with the presence of a
set and in the same time to be consistent with the negation of that set. This
is also true in terms of set relations, meaning that a causal condition set can
be simultaneously necessary for the presence of an outcome set, as well as for
its absence.
In fuzzy sets, it helps to think about a set and its negation as two completely
different sets: they are complementary, but unlike crisp sets where an element
either in or out of a set (rule of excluded middle), in fuzzy sets an element is

110 5 Analysis of Necessity

allowed to be part of both a set and its negation, and in some situations an
element can have high inclusions in both.
In terms of consistency, a set X is necessary for a set Y when the fuzzy values
of Y are consistently lower than the fuzzy scores of X across all cases (when
the fuzzy values of Y consistently display a subset relation with X). In such a
situation, the set Y is included in the set X because most of their intersection
belong to Y (or cover Y), therefore we can say the necessity consistency is
high.

5.3 Coverage/Relevance

Coverage is a measure of how trivial, or relevant is a necessary condition X for
an outcome Y. The classical example of the relationship between fire and the
air, says that air (oxygen) is necessary to start a fire. But this is an irrelevant
necessary condition, for a fire is not started from the mere presence of the
oxygen. That is necessary to maintain it, but does not start it as there are
many other situations when air is present without a fire.
In terms of Euler/Venn diagrams, trivialness can be detected by measuring
the proportion of the area within condition X that is covered by the set Y, as
seen in Fig. 5.5.

Y

X

Fig. 5.5 X as an irrelevant necessary condition for Y

The outcome Y is a very small set, compared to the necessary condition X:
there are very many cases (practically most) where X is present but Y does
not happen. This is a typical description of an irrelevant necessary condition:
although Y is completely included in the set X, its coverage is very small.

5.3 Coverage/Relevance 111

For crisp sets, this is the equivalent of a 2 × 2 table where the number of
cases in cell c (where both X and Y are present) is very small compared to
the number of cases in cell d where X is present and Y is not.

Table 5.5 Testing trivialness and relevance in a 2×2 table

Y

0

0

01 5

1
X

Y

0

0

1

1
X

25 120 b d

a c

The formula to calculate necessity coverage, for binary crisp sets, is:

covNX ⇐ Y = X ∩ Y
X = c

c+d

This is interpreted as the proportion of X covered by its intersection with Y.
For necessity coverage, the attention is focused on the cells located on the
right column, instead of the first row as in the necessity inclusion.
In the hypothetical crosstable (Table 5.5), X is a perfect necessary condition
for Y (it is completely included within X, there are no cases in cell a), but is
an irrelevant one because the proportion covered by their intersection 5/125=
0.04 is extremely small. Only 4% of X is covered by Y, given there are many
cases in cell d where Y is not present.
For most people, air is a trivial necessary condition for fire. If Table 5.5 would
refer to the relation between air (X) and fire (Y), the small coverage supports
our empirical knowledge that fire does not start from thin air. However, there
are many cases in the cell b (let’s say 25 attempts to start a fire in the absence
of oxygen), but that number can be close to plus infinity if we think about
the extra-terrestrial, outer solar system conditions in the rest of the Universe,
where we don’t observe oxygen and also don’t observe fire.
Analyzed from this perspective, air does not appear to be a trivial condition
for fire, as fire and air are highly associated with one another. If we could
observe this relationship from outside the Universe, fire is always observed in
the presence of oxygen, while at the same time it can be observed the vast
majority of (the rest of) the space where there is no oxygen and no fire.
Contrary to the common sense perception, air is actually a non-trivial neces-
sary condition for fire. Empirically, we do know that air is irrelevant because
it cannot cause fire, as there are also very many cases of air without fire, but
their relation is far from trivial.

112 5 Analysis of Necessity

Goertz (2006a) has a welcome contribution to the analysis of necessity, making
a difference between the concepts of trivialness and relevance. His work is
fundamental for the modern QCA, following Ragin and in the same time
pivotal for Ragin’s later developments.
He relates trivialness to cell b of the table and relevance to cell d, both of
them being found in the bottom row where Y is absent. The earlier work of
Braumoeller and Goertz (2000) make this point very clear, designing a series
of tests to evaluate trivialness of (proven) necessary conditions using a χ2 test
of homogeneity applied to a contingency (2 × 2) table.
While Braumoeller and Goertz employed the χ2 test of homogeneity, I believe
they have in fact employed the χ2 test of independence (the difference is
subtle, and the calculation method is exactly the same) for which the null
hypothesis is that two categorical variables are independent of one another.
Their analysis boils down to stating that a necessary condition X is trivial if
X and Y are independent (if the null hypothesis cannot be rejected).
Given that cell a is equal to zero (because X is necessary), this conclusion is
true only if cell b is also equal to zero (that is, we have no empirical evidence
of ∼X and ∼Y occurring together). Put differently, a necessary condition X
is trivial if and only if there is no empirical evidence of ∼X, as in the Venn
diagram from Fig. 5.6.

Y

X

Fig. 5.6 Trivial necessary condition X for the outcome Y

It looks as though condition X is missing, but in fact the necessary condition
is so large that it covers the entire universe defined by the outer square, while
the outcome Y is still a perfect subset of the condition X.
Returning to the Lipset data, we may explore the relation between LIT (level
of literacy) and SURV (survival of democracy) for the crisp version:

5.3 Coverage/Relevance 113

tbl <- with(LC, table(SURV, LIT))
tbl

LIT
SURV 0 1

0 5 5
1 0 8

The condition LIT is a necessary condition, with a necessity inclusion of 1
for the outcome SURV (0 cases occurring when democracy survives in the
absence of literacy). It is now possible to test for trivialness, by testing their
independence.
Two events are said to be independent, if the occurrence of one does not affect
the odds of the other occurring, which is the spirit of the Fisher’s exact test
of independence between two categorical variables.

fisher.test(tbl)

Fisher's Exact Test for Count Data

data: tbl
p-value = 0.03595
alternative hypothesis: true odds ratio is not equal to 1
95 percent confidence interval:
0.9305029 Inf

sample estimates:
odds ratio

Inf

With a significant p-value of 0.03595, we can reject the null hypothesis of inde-
pendence between rows and columns.1 There are other functions, for example
fisher.exact() in package exact2x2 that do a better job in calculating the
confidence interval, but the overall decision to reject the null hypothesis is
the same and decide with 95% confidence that survival of democracy is not
independent of literacy (making it non-trivial).
It is perhaps important to stress, one more time, that a test of trivialness
can only be performed if the condition is necessary, that is to have a very
small proportion of cases (towards 0) in the cell a where Y is present and X
is absent.
Relevance, on the other hand, is directly tested by the coverage of X by Y: a
higher proportion of cases in cell d (X occurring but not Y) relative to cell c
(X and Y occurring together), lowers the relevance of the necessary condition.
A necessary condition becomes more and more relevant as the proportion of
cell c increases, except for the situation when both X and Y become irrelevant

1 The null hypothesis that true odds ratio is equal to 1 is rejected despite the fact the
confidence interval contains the value of 1.

114 5 Analysis of Necessity

if they are so large that they both fill the entire universe (both being constant
and omni-present).
In the Lipset case, although LIT is definitely a necessary condition it is not
the most relevant one, given the raw coverage of 0.615:

pof("LIT <= SURV", data = LC)

inclN RoN covN

1 LIT 1.000 0.500 0.615

The function pof() returns, for necessity relations, another parameter of fit
called RoN (Relevance of Necessity) that will be discussed below, when calcu-
lating the fuzzy version of the coverage. For the moment, it is sufficient to
notice that literacy has a relevance score of 0.5 (even lower than its coverage).
The lower the RoN score, the more trivial a condition is, and the higher the
RoN score the higher the relevance, the bigger the relative importance of that
condition as a necessary condition. This conclusion is valid for both binary
and multi-value crisp.
Extending the test of trivialness for multi-value data is just as simple, because
multi-value data can be simplified to a binary situation by considering each
individual data versus everything else (versus its complement). Let us examine
again the relation between DEV and SURV in the multi-value version of the Lipset
data:

with(LM, table(SURV, DEV))

DEV
SURV 0 1 2

0 8 2 0
1 0 3 5

There are exactly zero cases in cell a (remember that R table prints the rows
in the reversed order), where SURV is present and DEV is completely absent.
But that does not make any of the other two values of DEV necessary for the
survival of democracy, their inclusion being rather modest:

pof("DEV{1} + DEV{2} <= SURV", data = LM)

inclN RoN covN

1 DEV{1} 0.375 0.867 0.600
2 DEV{2} 0.625 1.000 1.000
3 expression 1.000 0.800 0.800

5.3 Coverage/Relevance 115

That happens because DEV{1} and DEV{2} behave as self-contained sets,
despite the fact they are two categories of the same causal condition. The
necessity inclusion of DEV{1} for SURV is calculated by taking the cases
from DEV{1} in opposition to all other categories DEV{0} and DEV{2}.
We can arrive at exactly the same result by collapsing all other categories to
create a familiar, binary crisp 2 × 2 table:

DEV1 <- recode(LM$DEV, "1 = 1; else = 0")
table(LM$SURV, DEV1)

DEV1
0 1

0 8 2
1 5 3

We can use this separate object DEV1 to calculate its necessity inclusion
for the outcome SURV from the data LF (notice how the structure of the
command is changed), with the same end result:

pof(DEV1, LM$SURV)

inclN RoN covN

1 DEV1 0.375 0.867 0.600

Since no single value of condition DEV is individually necessary, it doesn’t
make sense to test for trivialness. The RoN score of 0.867 is high, but it does
not matter since the value 1 of condition DEV is not individually necessary
for the survival of democracy.
The fuzzy situation is more challenging, similar to the necessity inclusion:
since both conditions and outcome have fuzzy scores, there is no contingency
table around to apply these specific calculations.
Much like in the case of inclusion, fuzzy coverage is about the proportion of
X that is covered by Y, or better said covered by the intersection between X
and Y, given that Y already is a (perfect) subset of X, a very easy task using
the same fuzzy intersection, but this time dividing over the sum of X:

covNX ⇐ Y =
∑

min(X, Y)∑
X

Using the fuzzy version of the Lipset data, the necessity coverage for literacy
LIT and the outcome SURV is:

with(LF, sum(fuzzyand(LIT, SURV)) / sum(LIT))

[1] 0.6428027

116 5 Analysis of Necessity

This function holds for all versions, crisp and fuzzy. Remembering that cover-
age for the crisp version of LIT was 0.615, we can test this with:

with(LC, sum(fuzzyand(LIT, SURV)) / sum(LIT))

[1] 0.6153846

Naturally, one need not go through all these individual calculations, as the
function pof() already provides both inclusion and coverage in a single output:

pof("LIT <= SURV", data = LF)

inclN RoN covN

1 LIT 0.991 0.509 0.643

Once we know that LIT is a necessary condition, trivialness was detected in
the crisp version if there were (close to) zero empirically observed cases in
the ∼X column. But this kind of finding is also valid the other way round: a
necessary condition X is trivial if all observed cases are located in the presence
column where X = 1.
For fuzzy sets necessity, all (most) cases are located below the main diagonal,
and trivialness is detected just like in the crisp version, when all cases are
located vertically on the right side of the XY plot, where X = 1. If all cases
would be constantly equal to 1 in the condition X, then no matter what fuzzy
values Y would take, X would still be a superset of Y (hence a necessary
condition), but it would be a trivial one because X is constant and omni-
present (Fig. 5.7).

Fig. 5.7 Fuzzy trivialness of the necessary condition X

5.3 Coverage/Relevance 117

The more values come closer to the main diagonal, and away from the right
side of the plot, the more relevant the condition X becomes, as a necessary
condition for Y. To the limit, when points become perfectly aligned with the
main diagonal, X becomes fully relevant not only as a necessary, but also as
a sufficient condition for Y. In the crisp 2 × 2 table, this is the equivalent of
all cases from cell d being moved in cell b, signalling a perfect correlation.
Goertz (2006a, p. 95) was the first to propose a measure of trivialness, by
measuring the distance between the fuzzy value and 1:

Tnec =
1
N

∑ 1−X
1−Y

It is a measure of trivialness, but at the same time a measure of relevance
(what is not trivial, is relevant). The more this measure moves away from 0,
the more relevant the necessary condition is.
Later, Schneider and Wagemann (2012) observed that in some cases, this
formula can produce values above 1 (which do not make a lot of sense for a
fuzzy interpretation), hence they have proposed a modified version which is
the default RoN parameter of fit from the output of the pof() function:

RoN =
∑

(1−X)∑
(1−min(X,Y))

The distance between 1 to X is divided by the distance between 1 to the
intersection of X and Y, and since the intersection is a smaller value (taking
the minimum between X and Y), the denominator is always greater or equal
to the numerator, hence this parameter will never exceed the value of 1.
To demonstrate this with the necessity relation between LIT and SURV:

with(LF, sum(1 - LIT) / sum(1 - fuzzyand(LIT, SURV)))

[1] 0.5094142

The function XYplot() in package QCA creates an XY plot between a condi-
tion and an outcome, and at the same time presenting all parameters of fit.
Just like the pof() function, it has an argument called relation which is by
default set to sufficiency.

XYplot(LIT, SURV, data = LF, jitter = TRUE, relation = "necessity")

The code above creates an XY plot with slightly jittered points using the
argument jitter = TRUE (because some of them are so close that become
overlapped). The condition LIT is clearly a necessary condition for SURV,
with an inclusion score of 0.991, but its relevance of a bit more than 0.5 is
rather modest. This happens because many of the points below the main
diagonal have very high values on LIT (close to or equal to 1), therefore they
are constantly located close to the right margin of the plot.

118 5 Analysis of Necessity

Fig. 5.8 Literacy as a necessary condition for the survival of democracy

The average distance of the points from 1 gets smaller with each point close
to the right margin, which explains the semi-trivialness of the literacy as a
necessary condition for the survival of democracy.
Schneider and Wagemann (2012) point that a low relevance score should be
accompanied by studying the deviant cases for necessity. There are two middle,
dotted lines on the XY plot (a horizontal and a vertical one) that split the
fuzzy area into something which resembles a 2 × 2 crosstable.
A perfect relevance of necessity is met when cases are found in cells b (lower
left) and c (upper right). For necessity, cases found in cell a (upper left)
are called deviant cases consistency in kind, having a too large value on the
outcome Y, and a too low value on the condition X.
In the example from Fig. 5.8, there are no deviant cases consistency in kind,
in the upper left part of the plot. Schneider and Rohlfing (2013) introduce
yet another type of deviant cases consistency, namely in degree: for necessity
statements, those where both values (for the condition and for the outcome)
are greater than 0.5, but the outcome value is greater than the condition’s
value (thus invalidating the subset relation of the outcome in the condition).
The cases would be located in cell c (upper right), but above the diagonal.

5.4 Necessity for Conjunctions and Disjunctions 119

5.4 Necessity for Conjunctions and Disjunctions

For complex outcome phenomena, single conditions are rarely necessary. Many
times, a condition becomes necessary in combination with another condition,
either in conjunction, which is essentially an intersection of two or more sets,
or in disjunction which is a union of two or more sets.
Conjunctions are rather easy to interpret: if a conjunction of two sets A and
B is necessary for the outcome, it means that both A and B are necessary on
their own, since the intersection is part of both A and B, as in Fig. 5.9.
Since the outcome Y is located (more or less completely) inside the intersec-
tion AB, it is also located within A and within B separately, which means
that specifying the atomic expressions A and B is redundant, since their con-
junction logically implies both of them individually.

A BY

Fig. 5.9 Conjunction AB necessary for Y

A more interesting situation is when conditions A and B are both individually
necessary, but their conjunction is not necessary (i.e. the outcome Y is not
sufficiently included in their intersection). Figure 5.10 is somewhat similar
to Fig. 5.3, but extended to conjunctions: the outcome Y is almost (but not
completely) included in A, and with the same amount (again not completely)
included in B.
For both A and B, the inclusion of outcome Y is high enough to decide that
both A and B are individually necessary. But their intersection is small enough,
and Y large enough to get outside the intersection, such as the proportion of
Y within AB is not high enough to conclude the conjunction is necessary.
For both of these reasons (incomplete inclusion, or if completely included the
conjunction is redundant) it is actually very rare, if ever, to observe a non-
redundant necessary conjunction. But in both these situations, it is obvious

120 5 Analysis of Necessity

A B

Y

Fig. 5.10 A and B individually necessary, but not their conjunction AB

that Y is completely included in the disjunction (union) of the sets A + B,
although for the same arguments this particular disjunction is also redundant
because both A and B are individually necessary and the simpler expressions
are always preferred.
There are many situations (actually, most frequently) when no sets are indi-
vidually necessary, and implicitly neither their conjunction(s). But there will
always be a disjunction of conditions which is higher than the outcome set
Y, because unions form larger and larger areas with every causal condition
added to the disjunction. At some point, the union (the disjunction) will be
so large that a quasi complete inclusion of outcome Y in that disjunction is
bound to happen.

A B

Y

Fig. 5.11 A + B ⇐ Y: the union of A and B is necessary for Y

Figure 5.11 presents such a situation, where the outcome Y is sufficiently
outside A, and sufficiently outside B, to render both these conditions as indi-
vidually not necessary.

5.4 Necessity for Conjunctions and Disjunctions 121

But the outcome is sufficiently included in their disjunction A + B, since the
union of these sets is a much larger area than each of individual sets, so large
that help each other covering Y to a much larger proportion.
Disjunctions are easy to construct, through the logical OR operation presented
at Sect. 3.3.3 (taking the maximum of each pair of values), and in R using
the function fuzzyor(). But this easiness must be taken with a grain of salt,
however, because interpreting these disjunctions is not such a trivial matter
as it first might seem.
Theoretical meaning of conjunctions is straightforward: they are intersections
of known concepts, and will be discussed in depth in the next chapter at
the analysis of sufficiency. A possible hypothesis involving conjunctions is:
democratic countries (D) which have strong economic relations (E) don’t go to
war against each other (∼W). This isn’t a necessity statement (conjunctions
are redundant under necessity), but it shows clearly at which conjunction
(subset) it refers: countries which are both democratic, AND having strong
economic relations with other democratic countries: D·E.
Disjunctions, on the other hand, need a more careful interpretation, for they
usually result in unions referring to a higher order concept that is different
from the simple union of the constituent concepts. A disjunction D+E such
as: “democracies OR having strong economic relations” is something different
form the mere juxtaposition of D and E.
Disjunctions are higher order concepts, sometimes called super-concepts,
formed by the union of two or more concepts and their analytic meaning
depends on theory and researchers’ expertise in the field. There is no mechan-
ical or “one size fits all” interpretation for all cases. Some disjunctions might
be theoretically meaningless, and in various contexts they might not satisfy
the criteria for the relevance of necessity.
Care must be taken to avoid automatic super-concepts. The next section
shows how to use the function superSubset() to find all possible necessary
expressions from a certain data, but those are expressions derived from a
data specific environment, and not all of them have theoretical meaning.
Computers are very good at finding everything that meets certain criteria,
but it is the job of the researcher to sift through computer’s results and select
those which do have some meaning. Failing to do so is similar to fishing for
data: one can derive many conclusions based on a certain dataset, while some
other data might give more or less different conclusions.
It is not the data which should be leading the research process, the correct
approach is to test whether certain theoretical expectations are met in a par-
ticular dataset.

122 5 Analysis of Necessity

5.5 Exploring Possible Necessity Relations

The normal analysis of necessity involves specific tests for each causal condi-
tion of interest, as well as each possible larger (but theoretically meaningful)
superset disjunction. This can be time consuming, and sometimes we might
want to simply explore the data for possible necessity relations.
The package QCA offers a useful function called superSubset(), which does
all this works automatically. It explores every possible necessity relation, for
individual conditions, or conjunctions (even though conjunctions are redun-
dant), as well as all possible disjunctions of conditions that are necessary for
a given outcome.
When the number of causal conditions is large, it can be very helpful to get
an overview of all possible necessity relations, eliminating useless tests on
expressions that are not necessary for the outcome.
Using the same fuzzy version of the Lipset data, the command can be used
as simply as:

superSubset(LF, outcome = "SURV", incl.cut = 0.9)

inclN RoN covN

1 LIT 0.991 0.509 0.643
2 STB 0.920 0.680 0.707
3 LIT*STB 0.915 0.800 0.793
4 DEV+urb 0.964 0.183 0.506
5 DEV+ind 0.964 0.221 0.518
6 DEV+stb 0.912 0.447 0.579
7 urb+IND 0.989 0.157 0.511
8 DEV+URB+lit 0.924 0.414 0.570
9 DEV+URB+IND 0.903 0.704 0.716

10 DEV+lit+IND 0.919 0.417 0.569

The analysis is performed for the default value of the argument relation =
"necessity" (which does not need to be formally specified, since it is default),
and a similar analysis can be performed for the sufficiently relation, changing
it to "sufficiency", or even for relations which are both necessary and suffi-
cient, via "necsuf", or even "sufnec" if an analysis of sufficiency is used first.
It is extremely important to make it clear the list of necessary expressions
is automatically generated in a mechanical way, the underlying algorithm
merely crunching numbers in a process of indiscriminate search for all possible
necessity relations. It is the researcher who should make sense out of all these
disjunctions, and select only those which have a theoretical meaning.
For the moment, it is sufficient to notice that two atomic conditions were found
as individually necessary for the outcome, as well as their conjunction, and

5.5 Exploring Possible Necessity Relations 123

the disjunctions presented in the output are non-redundant (there are more
necessary disjunctions, but redundant as subsets of the ones found above).
Another important aspect to observe is that coverage is relatively low for all
expressions, and for some expressions their relevance is even closer to zero.
For such situations, one possibility is to specify a cut-off for the relevance
of necessity, for example list only those expressions with a decent relevance
threshold of at least 0.6:

superSubset(LF, outcome = "SURV", incl.cut = 0.9, ron.cut = 0.6)

inclN RoN covN

1 STB 0.920 0.680 0.707
2 LIT*STB 0.915 0.800 0.793
3 DEV+URB+IND 0.903 0.704 0.716

This is an interesting example that is worth discussing, for several things are
happening and all are important. To begin with, it can be noticed that the
conjunction LIT·STB is necessary, but the atomic condition LIT is not part
of this list of relevant necessary expressions.
Although a bit counter-intuitive, it does makes logical sense. If a conjunction
is necessary, this logically implies the atomic conditions are also necessary.
And that is absolutely true, since the inclusion score for the atomic condition
LIT is 0.991, which is a very high inclusion score that without any doubt
renders LIT as a necessary condition.
But necessary conditions are not always relevant. Air is a necessary condition
for a battle, but it is also completely irrelevant for the set of conditions that
lead to a battle. This is a similar situation, where LIT (literacy) is a necessary
but irrelevant condition for the outcome SURV (survival of democracy) in the
inter-war period.
This means the condition LIT is a high enough set, and the outcome SURV
is small enough to fit inside the intersection with STB (government stability),
and the intersection itself is small enough to cover SURV to such an extent
that the intersection is relevant and the atomic condition LIT is not.
Depending on how large the outcome set is, and where it is located within a
necessary causal condition, sometimes the atomic condition is necessary but
a conjunction with another condition is not necessary. Some other times, as
in this example, the conjunction is necessary and relevant and the atomic
condition is also necessary but not relevant.
This is why, in the results from the function superSubset(), there might be
both atomic conditions and their conjunctions listed as necessary conditions
but granted, when the conjunction itself is both necessary and relevant, all
superset conditions are redundant. In such a situation both LIT and STB are

124 5 Analysis of Necessity

implied by the conjunction LIT·STB, and they could as well be removed from
the list of necessary expressions.
The opposite situation happens for the sufficiency statements (to be discussed
in the next chapter), where if an atomic condition is sufficient for an outcome,
any of its subset conjunctions are redundant because they are logically suf-
ficient as part of the larger, atomic condition. In necessity statements, the
reverse happens that necessary conjunctions make the atomic conditions re-
dundant.
A third and perhaps most important thing that happened is that most of the
disjunctions disappeared from the resulting list of relevant necessary expres-
sions. Although necessary, some of them are highly irrelevant, for example the
disjunctive expression urb+IND with a very high inclusion score of 0.989 but a
very low relevance score of 0.157.
This is a perfect example of illogical disjunction, for it is very difficult to
make any logical and theoretical sense for the union between low urbanisation
(urb) and high industrialisation (IND), and their relationship as a necessary
expression for the survival of democracy. Similar illogical unions are those
between the high level of development (DEV) and low level of urbanisation
(urb) or with a low level of industrialisation (ind).
These are all textbook examples of disjunctive necessary expressions that
are meaningless constructs for the outcome of interest. Superset constructs
should not be automatically considered relevant, just because they have a
high inclusion score under a necessity statement.
Such a misjudgement was made by Thiem (2016), using precisely this Lipset
dataset in the attempt to demonstrate that necessary expressions should not
be used when identifying incoherent counterfactuals for the ESA—Enhanced
Standard Analysis (see Sects. 8.6 and 8.7), because they lead to an alleged
effect named CONSOL which states that removing such counterfactuals would
generate the conservative solution instead of the enhanced intermediate one.
In order to generate the conservative solution, most if not all remainders
should be blocked from the minimization process, therefore he employed the
entire list of necessary expressions resulting from the function superSubset()
irrespective of their relevance or their theoretical and even logical meaning.
By doing so, Thiem demonstrates a lack of understanding of how disjunctive
necessary expressions should be interpreted and employed in further analyses.
Ignoring the already existing standards of good practice, he abused the list
of mechanically generated necessary expressions and failed to consider that a
methodology which does not serve a theoretical purpose is just a meaningless
display of skills.

Chapter 6
Analysis of Sufficiency

The analysis of sufficiency is the main purpose of the QCA methodology, to
find the minimal configurations of conditions that are sufficient for a given
outcome. All main algorithms, to create a truth table, or to produce a logical
minimization (to name just the more important ones) are designed around
finding sufficiency relations.
Initially, this chapter contained a lot of information from all of these topics and
grew disproportionately larger than other chapters, so much so that it almost
had a contents of its own. Although topics like truth tables and minimizations
are integral part of the analysis of sufficiency, they ended up as separate
chapters to treat them in-depth and make a more clear distinction between
these important topics.
The current chapter introduces the basic concepts of the sufficiency that are
structurally very similar to the ones presented for the analysis of necessity. As
it will be unfolded in the next sections, especially in the conceptual descrip-
tion, necessity and sufficiency are two complementary and actually mirrored
concepts. For this reason, much of the common details are left out to concen-
trate on the important differences.
Just like necessity statements, the literature abounds with claims or hypothe-
ses involving the sufficiency of a cause or a configuration of causes over an
outcome of interest. When studying an outcome of interest, necessity state-
ments are important but sufficiency hypotheses resemble the most what we
usually conceptualize in terms of causes and effects.
It is therefore not a coincidence that sufficiency statements are denoted by the
forward arrow “⇒” sign. Given a cause X and an outcome Y, the statement
“X is sufficient for Y” is written as:

X ⇒ Y

© Springer International Publishing AG, part of Springer Nature 2019
A. Dus,a, QCA with R, https://doi.org/10.1007/978-3-319-75668-4_6

125

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-75668-4_6&domain=pdf
https://doi.org/10.1007/978-3-319-75668-4_6

126 6 Analysis of Sufficiency

6.1 Conceptual Description

Just like in the case of necessity, the sufficiency claim can be graphically rep-
resented by a subset/superset relation, as in the Venn diagram from Fig. 6.1.
If X is a sufficient condition for Y, then whenever Y is present, X is present
as well.

X

Y

Fig. 6.1 X ⇒ Y: causal condition X sufficient for the outcome Y

In terms of set relations, in the sufficiency claim Y is a superset of X, which
means that X is never present in the absence (outside) of Y. When this relation
is met, whenever X is present, Y is also present: there are situations where Y
is present in the absence of X, but in every situation where X happens, Y hap-
pens as well. In other words, if we know that X is present, it is guaranteed that
Y will be present as well (as a sufficient condition, X guarantees Y to happen).
The fact that Y is a bigger set than X (and it usually is the case) is an
indication that no single condition explains all of Y. There might be other
conditions, or other combinations of conditions which can explain the rest
of the set Y, and the only possible way that X would cover all of Y is the
situation when X is both necessary and sufficient for Y, a situation when both
sets are equally large.
The complementarity between necessity and sufficiency relations becomes ev-
ident from yet another perspective: if X is a sufficient condition for Y, then
the absence of the condition X is a necessary condition for the absence of Y.
In terms of set representations, if X is a subset of Y then ∼X covers a much
larger region than ∼Y, therefore ∼X is a superset of (necessary for) ∼Y. For
binary crisp sets, the same thing can be represented using 2 × 2 crosstables
(Table 6.1).
It should now be clear that, if X is sufficient for Y and ∼X necessary for
∼Y, due to the asymmetrical nature of set relations this is not a proof that

6.1 Conceptual Description 127

Table 6.1 X ⇒ Y (left) and ∼X ⇐ ∼Y (right)

Y

0

0

1

1
X

Y

0

0

1

1
X

5849

23 0

49 58

23 0

∼X should be sufficient for ∼Y, nor that X should be necessary for Y. Two
separate analyses of sufficiency must be performed for the presence and for the
absence of the output, leading to different sufficiency statements (expressions).
Mirroring the definitions from necessity, the following might be used for suf-
ficiency:

Definition 6.1. X is a sufficient condition for Y when every time X is present, Y
is also present (Y is always present when X occurs).
Definition 6.2. X is a sufficient condition for Y if X does not occur in the absence
of Y.

And in terms of set theory, the following equivalent definition:

Definition 6.3. X is a sufficient condition for Y if X is a subset of Y.

Knowing that X occurs is enough (sufficient) evidence to know that Y occurs.
As a concrete example, following Weber’s (1930) well known theory about
the relation between the Protestant ethic and the spirit of capitalism, we
could imagine at aggregate community level, having a Protestant ethic (causal
condition X) is sufficient to accumulate capital (outcome Y). Naturally, capital
can be accumulated in many other ways, therefore a Protestant ethic is not
a necessary condition to accumulate capital, but knowing that a group lives
through this kind of ethic and abides certain Protestant traits, is sufficient to
understand that group must be accumulating capital.
If necessity for multi-value conditions are a bit difficult to understand (Y
having to be a subset of a specific value of X, not a subset of X as a whole),
in the case of sufficiency things are a lot more straightforward. Assuming a
multi-value condition X has three values (0, 1 and 2), then a sufficiency for
value 2 is written as:

X{2} ⇒ Y

As it turns out, X{2} is sufficient for Y iff:
• all cases where X is equal to 2 are included in the set of Y, and
• there is no instance where of X equal to 2 outside the set of Y (X takes the

value 2 only inside Y, and nowhere else)

128 6 Analysis of Sufficiency

Y

X{1} X{2}

Fig. 6.2 X{2} ⇒ Y: causal condition X is sufficient for Y when equal to 2

Only X{2} is a subset of the outcome Y, while both X{1} and X{0} can
happen in the absence of Y, therefore only X{2} is a sufficient information to
conclude that Y occurs in its presence (Fig. 6.2).
Admittedly, perfect subset relations are rare to happen in the real world.
Instead, most of the times a set is more or less included into another set, a
topic that will be extensively covered in the next section. For the moment,
partial inclusions can be used as decision criteria to conclude that one “set”
is sufficient for another, as displayed in Fig. 6.3 below.

Y

X

Fig. 6.3 Almost but not complete inclusion of X into Y

This would be a good moment to pause and reflect upon the sufficiency rela-
tion X⇒Y: most readers would understand that “a” (single) causal condition
X is sufficient for the outcome Y, and most of the times this is true. But “X”
is only a notation, and the meaning of the word “set” should not be confused
with an automatic equivalence with a “single” causal condition.

6.1 Conceptual Description 129

A set may refer to many things, including entire conjunctions and/or dis-
junctions of multiple causal conditions. Imagine a situation with two causal
conditions A and B, conjunctively sufficient for an outcome Y. Replacing X
with A·B, then X ⇒ Y in fact means A·B ⇒ Y, with the “set” X being repre-
sented by the conjunction A·B. The same thing applies for an entire expression
like A·B + C, interpreted as a “set” in its entirety.
Although Venn diagrams such as the one from Fig. 6.3 can tell a story about
partial membership of a set X into Y, such diagrams are designed for crisp
sets only. To be more precise, they are designed for bivalent crisp sets, as there
are no Venn diagrams for multivalent sets.
In case of fuzzy sets, a similar representation for sufficiency can be graphically
represented through an XY plot. Figure 6.4 is another proof that necessity
and sufficiency are mirrored: in the necessity case the points should be found
below the main diagonal, while in the sufficiency case the points should be
located in the grey area above the diagonal.

Y

X
0.0 0.2 0.4 1.00.6 0.8

0.0

0.2

0.4

0.6

0.8

1.0

Fig. 6.4 Fuzzy sufficiency

This is also a superset/subset relation, since all values in X are lower than the
corresponding values in Y, therefore Y is a fuzzy superset of X. Figure 6.4 is
about a perfect fuzzy superset relation, given that all points are located above
the diagonal, but there are situations where a small proportion of the points
are located below the diagonal, lowering the inclusion score.

130 6 Analysis of Sufficiency

6.2 Inclusion/Consistency

Inclusion and consistency are two words that refer to the same thing. If the
inclusion of X (into Y) is high, then we say that X is highly consistent, or
X has a high consistency score. The term “consistency” is a synonym for the
word “inclusion”, and they are often used interchangeably.
For binary crisp sets, the same kind of general 2 × 2 can represent a sufficiency
relation (Table 6.2).

Table 6.2 General 2 × 2 table for sufficiency

Y

0

0

1 a c

b d

1
X

The focus, here, is on the cells c and d, with the sufficiency inclusion score
calculated with the formula:

inclSX ⇒ Y = X ∩ Y
X = c

c+d (6.1)

The inclusion is the proportion of the cases where both X and Y happen (the
intersection between X and Y, cell c), out of all cases where X happen (cells c
and d together). In a most trivial command, this intersection can be calculated
as:

sum(X & Y)/sum(X)

Using the same crisp version of the Lipset data, the inclusion of the condition
"DEV" in the outcome SURV is:

with(LC, sum(DEV & SURV) / sum(DEV))

[1] 0.8

There are eight cases where both DEV and SURV are present, out of a to-
tal of ten cases where DEV is present. Although not the highest possible, a
sufficiency inclusion score of 0.8 is high enough to conclude the level of devel-
opment DEV is sufficient, or at least an important part of an expression that
is sufficient for the outcome SURV, survival of democracy.
Chapter 7 will introduce the concept of an inclusion cut-off, to compare this
score against.

6.2 Inclusion/Consistency 131

The same result is obtained by using either version of the pof() command,
specifying relation "sufficiency" but "suf" will be accepted as well:

pof("DEV", "SURV", data = LC, relation = "sufficiency")

or

pof("DEV => SURV", data = LC)

inclS PRI covS covU

1 DEV 0.800 0.800 1.000 -

In the second version, the sufficiency relation is signalled with the help of
the right pointing arrow => sign, making the specification of the argument
relation = "sufficiency" redundant.
Calculations for multi-value data are just as simple, and extend a 2 × 2 table
to one with multiple columns:

Table 6.3 General crosstable for multivalue sufficiency

Y

0

0

1

1
X

e

f

a c

db

2

Here, it is actually more clear that each value of X has its own inclusion in
the outcome Y, as if each value was a separate set from all other values in X.
This is actually very close to what is happening, each value behaving indeed
as a separate set, with an additional constraint that “sets” corresponding to
each value are mutually exclusive.

inclSX{v} ⇒ Y = X{v} ∩ Y
X (6.2)

Replacing v with the value 2, as highlighted in the crosstable (Table 6.3), the
focus is on the last column where X takes the value 2, specifically on cell e
(where the intersection occurs) and cell f. The equation becomes:

inclSX{2} ⇒ Y = e
e + f

132 6 Analysis of Sufficiency

As a simple practical example, to mimic this command in R involves first
loading the multi-value version of the Lipset data (if not already loaded), and
the actual inclusion score is given by the second line of code:

data(LM)
with(LM, sum(DEV == 2 & SURV) / sum(DEV == 2))

[1] 1

There is a perfect consistency score of 1 between the value 2 of the development
condition, that is sufficient for the survival of democracy, which makes it
very likely to find this expression in the final minimization solution. This
consistency can further be inspected by subsetting the dataset with:

LM[LM$DEV == 2, c(1, 6)]

DEV SURV
BE 2 1
FR 2 1
NL 2 1
SE 2 1
UK 2 1

The consistency is perfect, with all countries having a surviving democracy
where the level of development is equal to 2. The same conclusion is drawn
using the parameters of fit function:

pof("DEV{2} => SURV", data = LM)

inclS PRI covS covU

1 DEV{2} 1.000 1.000 0.625 -

To compare with a different value, the situation is not similar in the cases
where the level of development is equal to 1:

LM[LM$DEV == 1, c(1, 6)]

DEV SURV
AU 1 0
CZ 1 1
FI 1 1
DE 1 0
IE 1 1

Out of the five countries where that happens, democracy survives only in
three, which means that DEV{1} is not sufficient for the outcome because its
inclusion score of 0.6 is too low:

pof("DEV{1} => SURV", data = LM)

6.2 Inclusion/Consistency 133

inclS PRI covS covU

1 DEV{1} 0.600 0.600 0.375 -

The equation for fuzzy sets is only a tiny bit more challenging to calculate.
Much like in the case of necessity, there are no crosstables to calculate simple
cell frequencies but the formula for calculating fuzzy inclusion remains the
same, a straightforward matter of summing their fuzzy intersection (the min-
imum of each pair of values between X and Y), and divide over the sum of all
values in X. This gives a score that reflects how much of X is included in Y
(or how consistent X is with the outcome Y).

inclSX ⇒ Y =
∑

min(X, Y)∑
X (6.3)

Using the fuzzy version of the Lipset data:

load the data if not previously loaded
data(LF)
then
with(LF, sum(fuzzyand(DEV, SURV)) / sum(DEV))

[1] 0.7746171

The same inclusion score (rounded to three decimals) is obtained using the
parameters of fit function:

pof("DEV => SURV", data = LF)

inclS PRI covS covU

1 DEV 0.775 0.743 0.831 -

Much like the necessity relation, simultaneous subset relations appear for suf-
ficiency relations as well. The inclusion in the negation of the outcome set is
not simply the complement of the inclusion in the set itself. With an inclusion
of 0.775 for the level of development into survival of democracy outcome, one
would expect exactly 0.225 to be outside (included in the negation of) the
outcome set, but the actual value is 0.334:

pof("DEV => ~SURV", data = LF)

inclS PRI covS covU

1 DEV 0.334 0.241 0.322 -

134 6 Analysis of Sufficiency

6.3 The PRI Score

To further analyze the issue of simultaneous subset relations, Table 5.4 will
be reexamined with the subset relations reversed, the values in set X being
switched with the values in set Y:

X <- c(0.2, 0.4, 0.45, 0.5, 0.6)
Y <- c(0.3, 0.5, 0.55, 0.6, 0.7)

Since all the elements of X are now lower than the corresponding elements in
Y, we expect there is a full consistency of 1 (full inclusion) for the sufficiency
of X for Y:

pof(X, Y, relation = "sufficiency") # "suf" is also accepted

inclS PRI covS covU

1 X 1.000 1.000 0.811 -

As expected, the inclusion score reaches a maximum, and we should expect
the inclusion in the negation of Y to be very low or even equal to zero. As it
turns out, the inclusion of X into the negation of Y is also very high:

pof(X, 1 - Y, relation = "sufficiency")

inclS PRI covS covU

1 X 0.814 0.000 0.745 -

This is a typical situation of simultaneous subset relations, with X appearing
to be sufficient for both Y and ∼Y, which is a logical contradiction. A decision
has to be made, and declare X as sufficient for either Y or ∼Y, as logically it
cannot be sufficient for both.
This is where the PRI measure comes into play, which is found in the output
for the parameters of fit function, in the sufficiency relation. PRI stands for
Proportional Reduction in Inconsistency, and was introduced in the fs/QCA
software by Ragin (2006) and further explained by Schneider and Wagemann
(2012), and has the following formula that is faithfully implemented in the
QCA package:

PRI =
∑

min(X, Y) −
∑

min(X, Y, ∼Y)∑
X −

∑
min(X, Y, ∼Y) (6.4)

6.3 The PRI Score 135

Equation (6.4) is an extension of Eq. (6.3). The first part is exactly the same,
both numerator and denominator subtracting the intersection between X, Y
and ∼Y, to take into account the negation of the outcome as well as its
presence, in the same formula.
When simultaneous subset relations occur, a decision has to be made, and
declare X as sufficient for either Y or ∼Y. This decision is based on the PRI
score, whichever has the highest product between the consistency score and
the PRI.
In our example, at the sufficiency relation for the presence of the output, the
PRI score is equal to the maximum 1. For the negation of the outcome, the
PRI score drops to 0, therefore it can safely be concluded that X is sufficient
for Y, and reject that X could be sufficient for ∼Y.
Schneider and Wagemann (2012) explain that simultaneous subset relations
appear when there is at least one logically contradictory case, for at least one of
the relations with Y and/or ∼Y. In the example above, X is a perfect subset
of Y, hence logically contradictory cases can only appear in the sufficiency
relation with the negation of the outcome (Fig. 6.5):

XYplot(X, 1 - Y, relation = "sufficiency")

Fig. 6.5 Sufficiency relation between X and the negation of Y

136 6 Analysis of Sufficiency

Indeed, there is one case in the lower right part of the XY plot, the region
where deviant cases in kind are found. Such careful attention to sufficiency
scores (for both presence of the outcome and its negation), combined with an
analysis of XY plots to identify deviant cases, possibly with a more in-depth
analysis of the deviant cases themselves, define an important preliminary step
before deciding that a certain condition or combination of conditions could
enter in the minimization process, as it will be shown in chapter 8.

6.4 Coverage: Raw and Unique

Unlike necessity, where coverage is a measure of how trivial a condition is
for an outcome, in the sufficiency relation the coverage is used as a measure
to calculate how much of the entire outcome Y is “explained” by a causal
condition X.
Readers who are familiar with standard statistical measures might also be
familiar with a regression based measure called R2, which reports how much
of the variation in the dependent variable is explained by a certain regression
model.
Obviously, QCA has nothing to do with statistics and variation, but the overall
interpretation is very similar. For sufficiency relations, set X is more important
for Y, the more it covers. To the limit, when a set X covers exactly 100% from
Y, it becomes not only sufficient but also necessary for the outcome.
An extension of X beyond 100% of Y would still render it as necessary, but it
will not sufficient anymore given that X needs to be a subset of Y for a valid
sufficiency relation.
A high coverage does not necessarily means that X needs to be large. When
Y is a small set, even a small X can cover a lot of Y. If Y is a large set, then
X needs to be large in order to cover a significant area of Y. More important
is the relative difference between X and Y: if the relative difference is small,
then X covers a lot, and if the relative difference is high, it means that X
covers very little from Y.
This kind of coverage is called a raw coverage (denoted with covS in the
QCA package, from coverage for sufficiency), to differentiate from the so-
called unique coverage (denoted with covU), specific to each set that covers Y.
Again, this is also very similar to the regression model, where two independent
variables can have their own R2 explaining the dependent variable Y, but
if the independent variables are collinear then much of their independent
explanation overlap and the overall R2 for the entire regression model is not
equal to the sum of the individual explanations.

6.4 Coverage: Raw and Unique 137

It is more or less similar in the sufficiency relation, raw coverage showing how
much of the outcome Y is explained by a set, and unique coverage showing
how much of that explanation can be uniquely attributed to that set, and to
no other.

Y

A B

Fig. 6.6 Unique coverage for X

Figure 6.6 displays two sufficient expressions A and B, together covering a
certain part of Y. That is the raw coverage of the union between the sets A
and B (the disjunctive expression A + B). Out of that total coverage, a good
part is covered by both sets, and whatever is covered uniquely by A is shown
in the striped area.
That is called the unique coverage of A, and it can be calculated by subtracting
the coverage of the intersection A·B, from the entire (raw) coverage of A:

covUA ⇒ Y = covSA ⇒ Y − covSA·B ⇒ Y

As coverage for sufficiency has the same formula as the inclusion for necessity,
this is translated as:

covUA ⇒ Y =
∑

min(Y, A)∑
Y −

∑
min(Y, A, B)∑

Y

Here, the set B can be interpreted by a combination of individual sets, for
example if we had any number of sets A, B, C and so on, the general formula
for the unique coverage of A is the raw coverage of A minus the coverage of
the intersection between Y, A, and the union of all other sets B, C and so on:

covUA ⇒ Y =
∑

min(Y, A)∑
Y −

∑
min(Y, A, max(B, C, . . .))∑

Y (6.5)

138 6 Analysis of Sufficiency

It is perhaps less obvious that raw and unique coverage apply not only for
individual (atomic) sets but also for any type of sufficient expression. Any
kind of SOP—sum of products expression can be interpreted as an individual
set, which has a certain coverage within the outcome set Y.
To put it differently, a “set” is not always atomic (formed by the elements of
a single condition). A conjunction of conditions is also a set, or a disjunction
and also a more complex expression of multiple conjunctions and disjunctions
is also a “set”. No matter how complex the expression is, the resulting set has
a coverage within the outcome set, if it is sufficient.

Chapter 7
The Truth Table

7.1 General Considerations

The truth table is the main analytical tool needed to perform the minimiza-
tion process that was invented in the engineering, and which Charles Ragin
adapted for the social sciences. It is well known the electric engineering pro-
cedure was pioneered by Shannon (1940) at MIT, after having been earlier
exposed to the work of George Boole, during his studies at the University
of Michigan. However it is less known that something extremely similar was
developed even earlier by the American sociologist Lazarsfeld (1937) who in-
troduced the concept of “attribute space”, later to become what is known
today as the concept of “property space”.
Lazarsfeld advanced a social research method based on typologies, arranging
the observed empirical information on various combinations of properties or
attributes. On page 10 from his 1937 paper, he presents a table containing
eight combinations of three binary attributes to study discrimination: “To
have (+) or not to have (–) a college degree, to be of white (+) or colored (–)
race, and to be native (+) or foreign born (–) in America”:

Table 7.1 Lazarsfeld’s attribute space

Combination number College degree White Native born
1 + + +
2 + + –
3 + – +
4 + – –
5 – + +
6 – + –
7 – – +
8 – – –

© Springer International Publishing AG, part of Springer Nature 2019
A. Dus,a, QCA with R, https://doi.org/10.1007/978-3-319-75668-4_7

139

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-75668-4_7&domain=pdf
https://doi.org/10.1007/978-3-319-75668-4_7

140 7 The Truth Table

This is almost exactly the description of a modern truth table, with reversed
rows (Table 7.1). What Lazarsfeld advanced, and what is probably less obvious
to the untrained eye, is that a truth table is a generalization of a regular
crosstable for multiple attributes (causal conditions in QCA).
For two conditions, keeping things simple and restrict each to only two values,
a crosstable and its truth table counterpart is easy to construct. Figure 7.1
shows such an example, with the familiar 2 × 2 crosstable on the left side and
the truth table on the right side, plus the corresponding cells.

Y

0

0

1

1
X

Y

0

X

a c

b d

10
0

01
1 1

b
a
d
c

Fig. 7.1 Crosstable and truth table for two conditions

The only difference is the arrangement of the individual combinations of val-
ues, in the crosstable along the familiar cross pattern, while in the truth table
the combinations are arranged row-wise, below the others.
A three-way crosstable, although not very difficult to imagine, is less obvious
and clearly more complicated. On the other hand, as seen in Fig. 7.2, the truth
table looks just as simple as the one from the previous example.

Z

0

0

1

1

X Y

0

X

b d

00
0

10
0 1

0
1
0
1

f h

0 1

0 1

Y
b
a
d
c

Z

0
01

1

11
1 1

0
1
0
1

f
e
h
g

a c e g

Fig. 7.2 Crosstable and truth table for three conditions

Crosstables can get even more complicated for four conditions, even more
for five until they reach a practical limit. They are useful when kept simple,
otherwise losing their practical applicability when they get very complicated.
Truth tables, on the other hand, look similar for any number of conditions,
just doubling their number of rows with each new condition.

7.1 General Considerations 141

The structure of a truth table is therefore a matrix with k columns, where k
is the number of causal conditions included in the analysis. The number of
rows is often presented as 2k, in the example above for three causal conditions
there are 23 = 8 rows. This is partially correct, because it applies to binary
crisp sets only.
The universal equation that applies for both binary and multi-value crisp sets,
is the product of the number of levels l (valents, categories) for each causal
condition from 1 to k:

k∏

i=1
lk = l1 × l2 × · · ·× lk (7.1)

Incidentally, 23 = 2×2×2 = 8, but if one of the causal conditions had three
values (levels) instead of two, the structure of the truth table changes to:

createMatrix(noflevels = c(3, 2, 2))

[,1] [,2] [,3]
[1,] 0 0 0
[2,] 0 0 1
[3,] 0 1 0
[4,] 0 1 1
[5,] 1 0 0
[6,] 1 0 1
[7,] 1 1 0
[8,] 1 1 1
[9,] 2 0 0

[10,] 2 0 1
[11,] 2 1 0
[12,] 2 1 1

In the above command, the argument noflevels refers to the number of levels
for three causal conditions (and the output shows three columns as well),
however the number of rows is not 8, but 3 × 2 × 2 = 12. Equation (7.1), as
well as the above function createMatrix(), give all possible combinations of
properties for any given number of causal conditions k, with any number of
levels for each, describing the entire property space mentioned by Lazarsfeld.
The next step in the truth table procedure is to allocate individual cases to
the corresponding truth table rows. This is something similar to constructing
a table of frequencies, as the calibrated values in the input data have the same
structure as the combinations from the truth table.
A good example here is the binary crisp version of the Lipset data, examining
the first six rows:

data(LC) # if not already loaded
head(LC)

142 7 The Truth Table

DEV URB LIT IND STB SURV
AU 1 0 1 1 0 0
BE 1 1 1 1 1 1
CZ 1 1 1 1 1 1
EE 0 0 1 0 1 0
FI 1 0 1 0 1 1
FR 1 0 1 1 1 1

Very often, multiple cases display the same configuration, and in the Lipset
data BE and the CZ have positive values for all conditions from DEV to STB,
and even the same value for the outcome SURV. These two cases are allocated
to the same truth table combination 11111, which has at minimum two cases:

truthTable(LC, outcome = "SURV", complete = TRUE, show.cases = TRUE)

OUT: output value
n: number of cases in configuration

incl: sufficiency inclusion score
PRI: proportional reduction in inconsistency

DEV URB LIT IND STB OUT n incl PRI cases
1 0 0 0 0 0 0 3 0.000 0.000 GR,PT,ES
2 0 0 0 0 1 0 2 0.000 0.000 IT,RO
3 0 0 0 1 0 ? 0 - -
4 0 0 0 1 1 ? 0 - -
5 0 0 1 0 0 0 2 0.000 0.000 HU,PL
6 0 0 1 0 1 0 1 0.000 0.000 EE
7 0 0 1 1 0 ? 0 - -
8 0 0 1 1 1 ? 0 - -
9 0 1 0 0 0 ? 0 - -

10 0 1 0 0 1 ? 0 - -
11 0 1 0 1 0 ? 0 - -
12 0 1 0 1 1 ? 0 - -
13 0 1 1 0 0 ? 0 - -
14 0 1 1 0 1 ? 0 - -
15 0 1 1 1 0 ? 0 - -
16 0 1 1 1 1 ? 0 - -
17 1 0 0 0 0 ? 0 - -
18 1 0 0 0 1 ? 0 - -
19 1 0 0 1 0 ? 0 - -
20 1 0 0 1 1 ? 0 - -
21 1 0 1 0 0 ? 0 - -
22 1 0 1 0 1 1 2 1.000 1.000 FI,IE
23 1 0 1 1 0 0 1 0.000 0.000 AU
24 1 0 1 1 1 1 2 1.000 1.000 FR,SE
25 1 1 0 0 0 ? 0 - -
26 1 1 0 0 1 ? 0 - -
27 1 1 0 1 0 ? 0 - -
28 1 1 0 1 1 ? 0 - -
29 1 1 1 0 0 ? 0 - -
30 1 1 1 0 1 ? 0 - -
31 1 1 1 1 0 0 1 0.000 0.000 DE
32 1 1 1 1 1 1 4 1.000 1.000 BE,CZ,NL,UK

7.2 Command Line and GUI Dialog 143

There are actually four cases with that particular combination (last row in
the truth table), namely BE, CZ, NL and UK. The same number of four cases
is displayed in the truth table for that configuration, under the column n.
The other two columns incl and PRI should be self-explanatory. Inclusion, for
crisp sets, show how consistent are the cases from a given causal configuration,
to display the same value in the outcome SURV. In this truth table, all ob-
served configurations are perfectly consistent, and the column OUT is allocated
a value of 1 where the inclusion is 1, and 0 otherwise.
In the past, when fuzzy sets were not introduced yet, a single case with a
different value for the outcome would render the causal combination as a
contradiction. The modern approach is to allocate a value of 1 in the OUT
column if the inclusion score is at least equal to a certain inclusion cut-off,
something which will become more evident when dealing with fuzzy sets. The
same thing applies for the PRI score, which is always equal to the inclusion
score for crisp sets, and will play a greater role for fuzzy sets.

7.2 Command Line and GUI Dialog

At this point, some more explanations are needed about the written command
and its arguments, as well as the output. A first thing to notice is the missing
argument conditions, a situation where all columns in the dataset except the
specified outcome are automatically considered causal conditions. The same
output can be produced with the following, equivalent command:

truthTable(LC, outcome = "SURV", conditions = "DEV, URB, LIT, IND, STB",
complete = TRUE, show.cases = TRUE)

The complete structure of the truthTable() function contains some other
arguments, like: incl.cut, n.cut, sort.by, use.letters and inf.test. They
will be described during this chapter, but for the time being it is important
to remember that not specifying an argument doesn’t mean they have no
influence over the output. Quite the contrary, they have default values that
are automatically employed, if not otherwise specified.
Before going through the rest of the arguments, it is also important to remem-
ber that package QCA has a graphical user interface for the most important
functions, including the creation of a truth table. Having the web user inter-
face started (see Sect. 2.4.2), the dialog is opened by choosing the menu:

Analyse/Truth Table
Figure 7.3 is an accurate match of the command used to produce the earlier
truth table:

144 7 The Truth Table

negate outcome

complete

Sort by:

Assign to: ttLC Run

Truth table

Outcome:
DEV
URB
LIT
IND
STB
SURV

Conditions:
DEV

LIT
IND
STB
SURV

URB

Dataset:
LC
LF
LM

frequency

inclusion

outcome

deviant cases

show cases

use letters

cut-off:

1frequency

inclusion 1

inclusion 0

1

Fig. 7.3 The “Truth table” dialog

• it has the LC, the binary crisp version of the Lipset data selected
• in the Outcome space the column SURV is selected
• no columns are selected in the Conditions space (all others are automati-

cally considered causal conditions)
• the checkboxes complete and show cases are selected
In addition, the truth table is attributed to an object called ttLC, otherwise it
will just be printed on the screen and then disappear from memory. Assigning
truth tables to objects, in the graphical user interface, has an additional role
to be presented later.
The checkbox complete (an argument) is not mandatory, here used for
demonstrative purposes to create the entire truth table containing all pos-
sible configurations. It can be seen that most of them are empty, with zero
empirical information in the column n, and the column OUT coded as a ques-
tion mark. These configurations are the so called remainders in QCA, and
they become counterfactuals when included in the minimization process.
In the middle part of the options space in the dialog, there are three possible
ways to sort the truth table: by the output score in the column OUT, by the
inclusion score, and by the number of cases (frequency) in column n. All of
these belong to the argument sort.by of the written function.
By default, there is no sorting and the truth table is presented in the natural
order of the configurations, from the absence of all (00000 on line 1) to the
presence of all (11111 on line 32). Activating any of those (by clicking in
the interface), opens up another possibility to sort: in decreasing (default) or
increasing order.

7.2 Command Line and GUI Dialog 145

Sort by: Decr.

frequency

inclusion

outcome

Sort by: Decr.

inclusion

outcome
frequency

Fig. 7.4 Different possibilities to sort the truth table

Figure 7.4 shows two different possibilities to sort the truth table, in the
interface. The left side activates the sort by inclusion (default in decreasing
order) and frequency (increasing order, having unchecked the corresponding
checkbox under Decr.easing).
In the right side, should all of these options be activated, the figure demon-
strates the action of dragging the frequency option on the top of the list, to
establish the sorting priority.
Unchecking the complete checkbox results in this command which is visible
in the command constructor dialog:

truthTable(LC, outcome = "SURV", show.cases = TRUE, sort.by = "incl, n+")

OUT: output value
n: number of cases in configuration

incl: sufficiency inclusion score
PRI: proportional reduction in inconsistency

DEV URB LIT IND STB OUT n incl PRI cases
22 1 0 1 0 1 1 2 1.000 1.000 FI,IE
24 1 0 1 1 1 1 2 1.000 1.000 FR,SE
32 1 1 1 1 1 1 4 1.000 1.000 BE,CZ,NL,UK
6 0 0 1 0 1 0 1 0.000 0.000 EE

23 1 0 1 1 0 0 1 0.000 0.000 AU
31 1 1 1 1 0 0 1 0.000 0.000 DE
2 0 0 0 0 1 0 2 0.000 0.000 IT,RO
5 0 0 1 0 0 0 2 0.000 0.000 HU,PL
1 0 0 0 0 0 0 3 0.000 0.000 GR,PT,ES

The truth table is now sorted according to the above criteria, and the row
numbers reflect this change: first row is number 22, which is also the first
where the inclusion score has the value or 1, and also the first there the
column OUT was allocated a value of 1 for a positive output.
The graphical user interface presents only three sorting options, but the writ-
ten command is more flexible and allows for any truth table column (including
the causal conditions) to be used for sorting. The sort.by argument accepts
a string with the columns of interest separated by a comma, and signal an
increasing order sorting by adding a “+” sign after a specific column.

146 7 The Truth Table

In the past, there was an additional logical argument called decreasing, and
applied to all sorting criteria. That argument has become obsolete with the
new structure of the sort.by argument, in the example above "incl, n+"
indicating to first sort by inclusion (by default in decreasing order) then after
the frequency in increasing order.

7.3 From Fuzzy Sets to Crisp Truth Tables

To better explain the cut-off values for inclusion and frequency, it is the right
time to talk about constructing a truth table from a fuzzy dataset. Crisp
datasets are straightforward, cases being allocated to their corresponding
truth table rows. With fuzzy sets this is not that easy because fuzzy scores
are not simply equal to 0 or 1, but anywhere in between, which means that a
case has partial memberships in all truth table configurations.
Ragin (2000) defines the fuzzy sets as a multidimensional vector space with
a number of corners equal to 2k, where each corner of the vector space is a
unique configuration of (crisp) causal conditions. The number of corners 2k is
accurate here, because fuzzy sets don’t have multiple “levels” (or categories)
like crisp sets but only two extreme limits represented by the numbers 0 (full
exclusion) and 1 (full inclusion).
The next section will introduce some notions of Boolean minimization, that
requires crisp scores. Since obviously fuzzy scores cannot be used for this
algorithm, the fuzzy scores need to be transformed into crisp scores to allocate
cases into one or another configuration from the truth table.
Basically, there is no “pure” fuzzy minimization procedure (given an infinite
number of possible combinations of fuzzy scores, for multiple dimensions),
therefore fuzzy sets need to be first transformed into crisp truth table before
the minimization.
This process requires a further detailed explanation of the relation between
the different contingency tables (crosstabulations) and the process of con-
structing typologies. The simplest example is a 2 × 2 contingency table with
four corners. As fuzzy sets are continuous, the squared vector space is also
continuous and a case has fuzzy coordinates anywhere in this space.
The vector space is continuous, but the corners are crisp and they define all
22 = 4 possible configurations of presence/absence for two causal conditions.
The fuzzy coordinates determine how close a certain point (a case) is to one
of the four corners. In Fig. 7.5 things are very clear, the point being closest to
the corner (01), but when coordinates are closer to the center of the vector
space it becomes more difficult to decide where to allocate the case.

7.3 From Fuzzy Sets to Crisp Truth Tables 147

00 10

01 11

Fig. 7.5 Bidimensional vector space

Each causal condition acts like a geometrical dimension, defining the shape of
the vector space. For one causal condition it is a line with two ends, for two
causal conditions the space is a cartesian square and four corners, for three
causal conditions the vector space is three dimensional having eight corners
etc. All dimensions are assumed to be orthogonal to each other, measuring
separate and distinct properties (Fig. 7.6).

000 100

001 101

011 111

110010

Fig. 7.6 Three dimensional vector space

Fuzzy sets almost never reach a corner with perfect scores, instead the coordi-
nates from the vector space tend to get closer to one corner or another. The
perfect scores from the corner are crisp, and they are similar to the Weberian
concept of “ideal-type”: as no scientific theory would ever account for the full
diversity of all possible particular manifestations of some phenomena in the
real world, it needs to be abstracted to some kind of a tool that is not a perfect
match for every possible real situation, but a close enough match to decide
that observed manifestations are similar to certain theoretical models.
The ideal-type is such an abstract model that cannot measured directly, but its
manifestations in the real world can be observed through various behavioral
indicators. The complex social reality is nothing but the manifestation of
an unobserved ideal-type, an important feature that allow categorizing the

148 7 The Truth Table

infinite combinations of manifestations to a finite collection of ideal-types,
corners of the multidimensional vector space (Lazarsfeld’s property space).
This way, a very complex reality can be located near a single such corner
from the vector space.
As logical as it may seem, this operation is not trivial because cases are
similar to multiple corners, especially when they are positioned close to the
center of the vector space. It is again Ragin (2005, 2008b) who developed the
transformation technique from fuzzy sets to the crisp corners from the truth
table, based on the fundamental property that:

. . . each case can have only a single membership score greater than 0.5 in the
logically possible combinations formed from a given set of causal conditions.

Ragin demonstrates this process using this simple dataset, which can be found
in the package QCA, along with a dedicated help file to describe each col-
umn. The outcome is “W” weak class voting, and the causal conditions are
“A” affluent countries, “I” substantial levels of income inequality, “M” high
percentage of workers employed in manufacturing, and “U” countries with
strong unions.

data(NF)
NF

A I M U W
AU 0.9 0.7 0.3 0.7 0.7
BE 0.7 0.1 0.1 0.9 0.7
DK 0.7 0.3 0.1 0.9 0.1
FR 0.7 0.9 0.1 0.1 0.9
DE 0.7 0.9 0.3 0.3 0.6
IE 0.1 0.7 0.9 0.7 0.9
IT 0.3 0.9 0.1 0.7 0.6
NL 0.7 0.3 0.1 0.3 0.9
NO 0.7 0.3 0.7 0.9 0.1
SE 0.9 0.3 0.9 1.0 0.0
UK 0.7 0.7 0.9 0.7 0.3
US 1.0 0.9 0.3 0.1 1.0

Particular fuzzy scores make the coordinates of each case close to multiple
corners, but only one corner is the closest. Cases have membership scores
for each corner, and Ragin observed that only one corner has a membership
score greater than 0.5, provided that none of the individual fuzzy scores are
equal to exactly 0.5 (maximum ambiguity). It is important, especially in the
calibration phase, to make sure that no score is equal to 0.5 otherwise the
transformation to crisp truth tables becomes impossible.
The first step of the procedure is to create a matrix of all observed cases on
the rows, and all possible combinations from the truth table on the columns.
The next step is to calculate inclusion scores for each case on each truth table
configuration, to decide which of the truth table rows has an inclusion score
above 0.5. There are 24 = 16 possible configurations in the truth table, with
as many columns in the matrix.

7.3 From Fuzzy Sets to Crisp Truth Tables 149

For reasons of space, the columns are labeled by their corresponding row
numbers from the truth table, but otherwise number 1 means 0000, number
2 means 0001, number 3 means 0010 etc.

Table 7.2 Ragin’s matrix

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
AU 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.3 0.3 0.3 0.3 0.3 0.7 0.3 0.3
BE 0.1 0.3 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.7 0.1 0.1 0.1 0.1 0.1 0.1
DK 0.1 0.3 0.1 0.1 0.1 0.3 0.1 0.1 0.1 0.7 0.1 0.1 0.1 0.3 0.1 0.1
FR 0.1 0.1 0.1 0.1 0.3 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.7 0.1 0.1 0.1
DE 0.1 0.1 0.1 0.1 0.3 0.3 0.3 0.3 0.1 0.1 0.1 0.1 0.7 0.3 0.3 0.3
IE 0.1 0.1 0.3 0.3 0.1 0.1 0.3 0.7 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
IT 0.1 0.1 0.1 0.1 0.3 0.7 0.1 0.1 0.1 0.1 0.1 0.1 0.3 0.3 0.1 0.1
NL 0.3 0.3 0.1 0.1 0.3 0.3 0.1 0.1 0.7 0.3 0.1 0.1 0.3 0.3 0.1 0.1
NO 0.1 0.3 0.1 0.3 0.1 0.3 0.1 0.3 0.1 0.3 0.1 0.7 0.1 0.3 0.1 0.3
SE 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.7 0.0 0.1 0.0 0.3
UK 0.1 0.1 0.3 0.3 0.1 0.1 0.3 0.3 0.1 0.1 0.3 0.3 0.1 0.1 0.3 0.7
US 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.1 0.1 0.1 0.7 0.1 0.3 0.1

Calculating membership scores in truth table configurations is rather straight-
forward. As an example, the first configuration in the truth table (first column
in Table 7.2) is 0000, or in product notation it is ∼A·∼I·∼M·∼U.
The fuzzy scores for the first country (Austria) are:

NF[1, 1:4] # the same can be produced with NF["AU", 1:4]

A I M U
AU 0.9 0.7 0.3 0.7

Calculating its inclusion score in the first truth table configuration (which
should be equal to 0.1) involves a simple negation of each score then taking
the minima, using the familiar fuzzyand() intersection function, or perhaps
even more simple with:

compute("~A~I~M~U", data = NF[1,])

[1] 0.1

The only truth table configuration where Austria has a membership score
above 0.5 is number 14, which is 1101. When calculating the fuzzy intersection
for this configuration, only the third causal condition M is negated:

compute("AI~MU", data = NF[1,])

[1] 0.7

150 7 The Truth Table

Ragin’s procedure, as simple and intuitive as it may seem, involves calculating
all possible membership scores for all cases into all truth table configurations.
When the number of causal conditions is small, this is really easy for any
decent computer, but the more causal conditions are added into the model,
the more difficult it becomes. That happens because the number of rows in
the truth table increases exponentially to the powers of 2, quickly reaching a
physical limit even for strong computers.
The required memory grows more than twice for each new condition (the
truth table grows not only on the rows, but also on the columns), and the
calculation time becomes prohibitively slow and very soon grindes to a halt.
But looking at Table 7.2, it is clear that not all columns have membership
scores above 0.5. Especially for large(r) truth tables, most configurations lack
any empirical information due to the issue of limited diversity.
For as little as 10 causal conditions, a truth table has 210 = 1024 rows, and
more than 1000 of them would be empty (no empirical information from
the observed cases). For 20 causal conditions, more than one million rows are
empty and they require not only a lot of memory but also pointless calculations
that consume a lot of time.
Ragin’s procedure can be greatly improved by further taking note that a case
can have only one membership score above 0.5. To find the configurations of
interest for each case, a simple dichotomization does the job:

ttrows <- apply(NF[, 1:4], 2, function(x) as.numeric(x > 0.5))
rownames(ttrows) <- rownames(NF)
ttrows

A I M U
AU 1 1 0 1
BE 1 0 0 1
DK 1 0 0 1
FR 1 1 0 0
DE 1 1 0 0
IE 0 1 1 1
IT 0 1 0 1
NL 1 0 0 0
NO 1 0 1 1
SE 1 0 1 1
UK 1 1 1 1
US 1 1 0 0

These are exactly the truth table configurations where the cases have member-
ship scores above 0.5, the code below transforming their binary representation
into decimal notation using the matrix multiplication operator %*%:

drop(ttrows %*% c(8, 4, 2, 1)) + 1

AU BE DK FR DE IE IT NL NO SE UK US
14 10 10 13 13 8 6 9 12 12 16 13

7.4 Calculating Consistency Scores 151

Ragin (2008b, p. 138) warns against a mechanical dichotomization of fuzzy
sets, and with good reasons. While dichotomization should not be used to
convert fuzzy data to crisp sets, it can however be used to quickly identify
the truth table configurations where the cases belong to, with a dramatic
improvement on performance.
By not verifying all possible configurations from the truth table, Ragin’s pro-
cedure becomes much faster and allows the possibility to generate truth tables
with virtually any number of causal conditions, including the parameters of
fit (something impossible in his initial, original version).

7.4 Calculating Consistency Scores

Each configuration in the truth table has a consistency score with the out-
come (an inclusion in the outcome set). Table 7.2 present 16 columns for all
configurations, and it is easy to be seen that each such column (configuration)
has as many values as the number of cases in the dataset, and at the same
time as many as the number of values in the outcome.
The inclusion score of a certain configuration in the outcome is calculated
using the usual formula from Eq. (6.3), where X is replaced by the inclusion
scores of the cases in that particular configuration (the columns from Ta-
ble 7.2). The truth table for the NF data is presented below:

ttNF <- truthTable(NF, outcome = "W", incl.cut = 0.8, show.cases = TRUE)
ttNF

OUT: output value
n: number of cases in configuration

incl: sufficiency inclusion score
PRI: proportional reduction in inconsistency

A I M U OUT n incl PRI cases
6 0 1 0 1 0 1 0.760 0.400 IT
8 0 1 1 1 1 1 0.870 0.667 IE
9 1 0 0 0 1 1 1.000 1.000 NL

10 1 0 0 1 0 2 0.700 0.438 BE,DK
12 1 0 1 1 0 2 0.536 0.071 NO,SE
13 1 1 0 0 1 3 0.971 0.944 FR,DE,US
14 1 1 0 1 1 1 0.821 0.583 AU
16 1 1 1 1 0 1 0.654 0.100 UK

What is printed on the screen is only a fraction of the total information con-
tained in the object produced by the function truthTable(). This is essentially
a list object with several other components, among which the useful minmat.

152 7 The Truth Table

ttNF$minmat

6 8 9 10 12 13 14 16
AU 0.1 0.1 0.3 0.3 0.3 0.3 0.7 0.3
BE 0.1 0.1 0.1 0.7 0.1 0.1 0.1 0.1
DK 0.3 0.1 0.1 0.7 0.1 0.1 0.3 0.1
FR 0.1 0.1 0.1 0.1 0.1 0.7 0.1 0.1
DE 0.3 0.3 0.1 0.1 0.1 0.7 0.3 0.3
IE 0.1 0.7 0.1 0.1 0.1 0.1 0.1 0.1
IT 0.7 0.1 0.1 0.1 0.1 0.3 0.3 0.1
NL 0.3 0.1 0.7 0.3 0.1 0.3 0.3 0.1
NO 0.3 0.3 0.1 0.3 0.7 0.1 0.3 0.3
SE 0.1 0.1 0.0 0.1 0.7 0.0 0.1 0.3
UK 0.1 0.3 0.1 0.1 0.3 0.1 0.1 0.7
US 0.0 0.0 0.1 0.1 0.1 0.7 0.1 0.1

This is precisely the relevant part from Table 7.2, where the column numbers
correspond to the row numbers from the empirically observed truth table
configurations above. As shown in the previous section, the matrix represents
the inclusion of all cases in each configuration, and the scores are used to
calculate the overall consistency of all these configurations.
To demonstrate, consider the first column number 6, that is 0101 first row in
the truth table. In product notation it is written as “∼A·I·∼M·U”, but since
the conditions are simple letters it can also be written more simple as “aImU”.
In Table 7.3 below, the sum of the scores for the intersection with the outcome
W is 1.9, while the sum of the scores in column “aImU” is 2.5, making the
ratio between them equal to 0.760 which is the inclusion score from the first
row in the truth table object ttNF above.

Table 7.3 Calculating the inclusion of configuration aImU in outcome W

aImU W min(aImU, W)
AU 0.1 0.7 0.1
BE 0.1 0.7 0.1
DK 0.3 0.1 0.1
FR 0.1 0.9 0.1
DE 0.3 0.6 0.3
IE 0.1 0.9 0.1
IT 0.7 0.6 0.6
NL 0.3 0.9 0.3
NO 0.3 0.1 0.1
SE 0.1 0.0 0.0
UK 0.1 0.3 0.1
US 0.0 1.0 0.0

2.5 1.9

7.4 Calculating Consistency Scores 153

The same value can be obtained with the familiar parameters of fit pof()
command:

pof("aImU => W", data = NF)

inclS PRI covS covU

1 aImU 0.760 0.400 0.279 -

And even with the fuzzyand() function:

aImU <- ttNF$minmat[, 1] # [, "6"] would also work
with(NF, sum(fuzzyand(aImU, W)) / sum(aImU))

[1] 0.76

The minmat component is thus more than just informative. It can be used for
various purposes, including to identify the so called deviant cases consistency:
that have an inclusion in the configuration higher than 0.5, but a lower (than
0.5) inclusion in the outcome.

truthTable(NF, outcome = "W", incl.cut = 0.8, show.cases = TRUE,
dcc = TRUE)

OUT: output value
n: number of cases in configuration

incl: sufficiency inclusion score
PRI: proportional reduction in inconsistency
DCC: deviant cases consistency

A I M U OUT n incl PRI DCC
6 0 1 0 1 0 1 0.760 0.400
8 0 1 1 1 1 1 0.870 0.667
9 1 0 0 0 1 1 1.000 1.000

10 1 0 0 1 0 2 0.700 0.438 DK
12 1 0 1 1 0 2 0.536 0.071 NO,SE
13 1 1 0 0 1 3 0.971 0.944
14 1 1 0 1 1 1 0.821 0.583
16 1 1 1 1 0 1 0.654 0.100 UK

The dcc argument is a new one, and complements the argument show.cases. It
prints the cases that represent the true logical remainders, and that happens if
and only if the argument show.cases is activated. If this happens, the printing
method asks which cases to print, the normal or the deviant cases.
The graphical user interface has a correspondent checkbox called deviant
cases, that is activated only when the checkbox show cases is checked.

154 7 The Truth Table

7.5 The OUTput Value

In a situation where all cases from a given configuration are perfectly consis-
tent with the outcome, the column OUT will be assigned the value from the
data.
More difficult are the situations where the consistency is not perfect, having
values below 1. Back in the csQCA days, a single case from the same configu-
ration, having a different output was problematic, since the requirement was
to have a perfect inclusion (no cases with the presence of X, outside Y).
When the evidence is small (one contradictory case out of, say 5), that single
case can be meaningful, but often the evidence is large enough to justify a
natural question: what is the value of a single contradictory case out of 100?
Is that case enough to dismiss a close to perfect (but not full) consistency?
This kind of question, concomitantly with the appearance of fuzzy sets QCA,
marked the beginning of what today is the useful inclusion cut-off. The actual
consistency score is compared against a certain threshold (specified by the
researcher), and the column OUT is attributed a value of 1 only if the consis-
tency score is higher. Even if not perfectly consistent, an inclusion score of
0.91 is still high enough, in any case higher than a plausible cut-off value of
0.9. Cases with a consistency score below this value are attributed a value of
0 in the OUT column.
In the fuzzy version of the Lipset data, no single truth table configuration
has a perfect inclusion score, therefore in order to have at least one or some
configurations assigned with a positive output, the argument incl.cut needs
to be lowered down:

data(LF) # if not already loaded
truthTable(LF, outcome = "SURV", incl.cut = 0.8)

OUT: output value
n: number of cases in configuration

incl: sufficiency inclusion score
PRI: proportional reduction in inconsistency

DEV URB LIT IND STB OUT n incl PRI
1 0 0 0 0 0 0 3 0.216 0.000
2 0 0 0 0 1 0 2 0.278 0.000
5 0 0 1 0 0 0 2 0.521 0.113
6 0 0 1 0 1 0 1 0.529 0.228

22 1 0 1 0 1 1 2 0.804 0.719
23 1 0 1 1 0 0 1 0.378 0.040
24 1 0 1 1 1 0 2 0.709 0.634
31 1 1 1 1 0 0 1 0.445 0.050
32 1 1 1 1 1 1 4 0.904 0.886

7.5 The OUTput Value 155

It should be clear that the output value from the truth table is not the same
thing as the outcome column from the original data, even for binary crisp
data. Not only because the outcome might have fuzzy values and the output
should be binary, but most importantly because the outcome is given while
the truth table output is assigned, sometimes against evidence from the data.
So far, the inclusion cut-off argument incl.cut was successfully used to pro-
duce the required two values of the output, 0 and 1. But in the former crisp
sets procedure there was another possibility for the output value, namely the
contradiction. That happens when the evidence is not enough for a positive
output, but neither it is for a negative one.
To allow for such situations, the argument incl.cut accepts two values (two
thresholds), the first above which the output is assigned a value of 1, and
the second below which the output is assigned a value of 0. Such a length 2
numerical vector has the form c(ic1, ic0) where ic1 is the inclusion cut-off
for a positive output, and ic0 the inclusion cut-off for a negative output. If
not otherwise specified, the value of ic0 is set equal to the value of ic1.
As an example, let us have a look at the truth table for the negation of
the outcome (note the tilde in front of the outcome’s name ∼SURV). In the
graphical user interface, the checkbox negate outcome does the same thing:

truthTable(LF, outcome = "~SURV", incl.cut = 0.8)

OUT: output value
n: number of cases in configuration

incl: sufficiency inclusion score
PRI: proportional reduction in inconsistency

DEV URB LIT IND STB OUT n incl PRI
1 0 0 0 0 0 1 3 1.000 1.000
2 0 0 0 0 1 1 2 0.982 0.975
5 0 0 1 0 0 1 2 0.855 0.732
6 0 0 1 0 1 1 1 0.861 0.772

22 1 0 1 0 1 0 2 0.498 0.281
23 1 0 1 1 0 1 1 0.974 0.960
24 1 0 1 1 1 0 2 0.495 0.366
31 1 1 1 1 0 1 1 0.971 0.950
32 1 1 1 1 1 0 4 0.250 0.106

As expected, the configurations which previously were coded with a positive
output 1, are now coded with a negative output 0, with one exception. The
configuration number 24 (10111) has a value of 0, and previously (for the
normal outcome) it was also coded with 0, due to its low consistency of 0.709
(below the inclusion cut-off of 0.8). For the negation of the outcome, its inclu-
sion score of 0.495 is also very low.
Something happens with this configuration, since there is not enough evidence
for neither a positive output, nor for a negative one.

156 7 The Truth Table

It looks like a contradiction, but using a single inclusion cut-off does not solve
the puzzle. This is the purpose for the second value in the incl.cut argument,
with the following decision process:
• if the inclusion score is greater than ic1, the output value is coded to 1
• if the inclusion score is lower than ic0, the output value is coded to 0
• when the inclusion score is between ic0 and ic1, (greater than ic0 but

lower than ic1) the output value is coded as a contradiction, with the
letter C:

truthTable(LF, outcome = "SURV", incl.cut = c(0.8, 0.6))

OUT: output value
n: number of cases in configuration

incl: sufficiency inclusion score
PRI: proportional reduction in inconsistency

DEV URB LIT IND STB OUT n incl PRI
1 0 0 0 0 0 0 3 0.216 0.000
2 0 0 0 0 1 0 2 0.278 0.000
5 0 0 1 0 0 0 2 0.521 0.113
6 0 0 1 0 1 0 1 0.529 0.228

22 1 0 1 0 1 1 2 0.804 0.719
23 1 0 1 1 0 0 1 0.378 0.040
24 1 0 1 1 1 C 2 0.709 0.634
31 1 1 1 1 0 0 1 0.445 0.050
32 1 1 1 1 1 1 4 0.904 0.886

All of these arguments seem to provide a complete experience to create a
truth table. There is however one more situation that is not covered by any
of those, stemming from the steady expansion of the QCA methodology from
the small-N world to the large-N situations, with hundreds of cases in the
dataset.
In the quantitative methodology, a certain value is not exactly smaller or
greater than another, because of the inherent uncertainty generated by the
random sampling. Each dataset is unique, drawn from a very large population,
and some situations can be sample specific. The same value can be smaller in
a different random sample. The usual strategy is to bring sufficient statistical
evidence to declare one value significantly greater than another, entering the
realm of inferential statistics.
To dismiss possible suspicions that inclusion scores (greater than a certain cut-
off) are sample specific, the truth table function has another argument called
inf.test, which assigns values in the OUT column based on an inferential test.
It is a binomial test, and it only works with binary crisp data (no fuzzy, no
multi-values).
The argument is specified as a vector of length 2 or a single string containing
both, with the type of test (currently only "binom") and the critical signifi-
cance level.

7.5 The OUTput Value 157

truthTable(LC, outcome = "SURV", incl.cut = 0.8, inf.test = "binom, 0.05")

OUT: output value
n: number of cases in configuration

incl: sufficiency inclusion score
PRI: proportional reduction in inconsistency

pval1: p-value for alternative hypothesis inclusion > 0.8

DEV URB LIT IND STB OUT n incl PRI pval1
1 0 0 0 0 0 0 3 0.000 0.000 1.000
2 0 0 0 0 1 0 2 0.000 0.000 1.000
5 0 0 1 0 0 0 2 0.000 0.000 1.000
6 0 0 1 0 1 0 1 0.000 0.000 1.000

22 1 0 1 0 1 0 2 1.000 1.000 0.640
23 1 0 1 1 0 0 1 0.000 0.000 1.000
24 1 0 1 1 1 0 2 1.000 1.000 0.640
31 1 1 1 1 0 0 1 0.000 0.000 1.000
32 1 1 1 1 1 0 4 1.000 1.000 0.410

It seems that all outcome values have been coded to zero.
Suggestion: lower the inclusion score for the presence of the outcome,
the relevant argument is "incl.cut" which now has a value of 0.8.

This command performs a binomial statistical test, using a 5% significance
level. Only the configurations with a significantly greater than 0.8 inclusion
score would be coded with a positive output 1.
The example is provided for demonstration purposes only. Due to the very
small number of cases for each configuration (from 1 to at most 4), binomial
testing is obviously not producing any significant results. The probability of
error pval1 is too high (100% in many cases), therefore the null hypothesis
that the true (population) inclusion score is less than 0.8, cannot be rejected.
This kind of statistical test requires large(r) samples to draw meaningful con-
clusions, but if such data would be available, specifying the inf.test should
be done as in the example above.
A more important argument, albeit rarely used, is the frequency cut-off n.cut,
the minimum number of cases under which a configuration is declared as a
remainder (the output value is assigned a “?” sign), even if it has an consis-
tency score above the inclusion cut-off. As QCA data belongs to the so called
“small-N” world, n.cut has a default value of 1 but there are situations with
very large data available, when it might make sense to raise the frequency
cut-off to more than 1 case per configuration.
The final argument that needs introducing is a logical one called use.letters.
When the names of the causal conditions are too long, they can be replaced
by alphabetical letters. Switching this argument to TRUE will automatically
replace each causal condition’s name with an upper case letter, starting with
A for the first column, B for the second etc (naturally, there should not be
more than 26 causal conditions in the dataset).

158 7 The Truth Table

7.6 Other Details

Theory makes a distinction between crisp and fuzzy sets, and yet another
distinction between (binary) crisp and multi-value (crisp) sets. For some un-
known reason, probably dating back when some QCA packages created sepa-
rate truth tables for crisp, multi-value and fuzzy sets, many researchers remain
under the impression that analyses themselves must be carried separately for
each of these types.
In package QCA, there are no separate truth table functions for different
types of sets. The same function truthTable() can be used for crisp, multi-
value and fuzzy data. However, this information does not seem to be obvi-
ous enough since there are still situations when researchers believe the whole
dataset (with all its conditions) should be calibrated binary, multi-value or
fuzzy.
This misconception should be clarified, as the function truthTable() can easily
accommodate a dataset containing all types of calibrations at once.
Another detail that is probably less known, that is especially useful for repli-
cation purposes, is that a truth table object contains all the information nec-
essary to trace its creation. It contains a component named call that displays
the exact command that was used to produce it, and also the original dataset
that was used as an input for the function truthTable(), in the component
initial.data.
Researchers can thus either exchange the initial data and the exact set of
commands used to produce the truth table, or perhaps more simple they can
exchange the truth table itself, since it already contains all relevant informa-
tion:

ttLF <- truthTable(LF, outcome = "SURV", incl.cut = c(0.8, 0.6))
names(ttLF)

[1] "tt" "indexes" "noflevels" "initial.data"
[5] "recoded.data" "cases" "DCC" "minmat"
[9] "options" "fs" "call" "origin"

Due to many considerations, it is always a good idea to name all columns from
the dataset with upper case letters. This advice is not only a good practise,
but it can save users from many hours of trying to understand what does not
work, should anything happen. Generally, the functions in package QCA are
robust enough to deal with such situations, and this is one reason for which
there is another component named recoded.data in the output list object.

Chapter 8
The Logical Minimization

The logical, or Boolean minimization process is the core of the QCA methodol-
ogy, which seeks to find the simplest possible expression that is associated with
the explained value of an output. The term expression, here, is a synonym for
sums of products, or unions of intersections, or disjunctions of conjunctions (of
causal conditions). It will also be used as a synonym for a causal configuration,
since that is a conjunction (a product) of causal conditions.
McCluskey (1956) was the first to introduce this procedure, building on the
previous work by Quine (1952, 1955), leading to an algorithm which is today
known as the “Quine-McCluskey” (from here on, QMC). Their work was ded-
icated to electrical engineering switching circuits (opened and closed gates,
Boolean state), and for each combination of such gates in the circuit design,
an output is either present or absent.
But instead of a circuit designed for all possible combinations where an output
occurs, McCluskey observed that it is much cheaper to specify the simplest
possible expression, with a superior overall performance of the circuit. The
idea is quite simple, and it is based on the following Boolean algebra theorem:

A·B + A·∼B = A(B + ∼B) = A (8.1)

Given any two expressions, if they differ by exactly one literal, that literal can
be minimized. Table 8.1 presents a comparison of two expressions with three
causal conditions each. Since the condition B is the only different one, it can
be eliminated and the initial two expressions can be replaced by A·C.

Table 8.1 Boolean minimization
A B C
1 1 1 A·B·C
1 0 1 A·∼B·C
1 - 1 A·C

© Springer International Publishing AG, part of Springer Nature 2019
A. Dus,a, QCA with R, https://doi.org/10.1007/978-3-319-75668-4_8

159

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-75668-4_8&domain=pdf
https://doi.org/10.1007/978-3-319-75668-4_8

160 8 The Logical Minimization

It is the simplest possible example of Boolean minimization, and the QMC
algorithm is an extension of this operation for all possible pairs of cases. The
first part of the original algorithm consists of successive iterations of these
operations:
• compile a list of all possible pairs of two expressions
• check which pairs differ by only one literal, and minimize them
• the minimized pairs, plus the surviving unminimized expressions enter in

the next iteration
• repeat operations until nothing can further be minimized
The final surviving, minimal expressions are called prime implicants (PI). The
second part of the QMC algorithm creates the so called prime implicants chart,
a matrix with the prime implicants on the rows, and the initial expressions
on the columns. The PI chart from the original book by Ragin (1987, p. 97)
is a very good example (Fig. 8.1).

Fig. 8.1 Ragin’s prime implicants chart

To solve the PI chart, the task is to find all possible combinations of rows (PIs)
that cover all columns (initial expressions). In this example, there is a single
combination of first and third PI that together, cover all initial expressions.
The final solution is: A·C + B·c.
This is obviously a very simple PI chart, and the solution is straightforward.
More complicated examples have more rows, and it is possible to have mul-
tiple solutions from multiple combinations of prime implicants that cover all
columns. This is a quite technical jargon, and sometimes the columns are
called primitive expressions, but it actually means that a solution is valid
when the combination of prime implicants account for all observed empirical
evidence.
Each prime implicant is a sufficient expression itself, but it doesn’t always
account for all primitive expressions. In such a situation, it needs (an)other
sufficient prime implicant(s) that account for different other columns, and
disjunctively (union with logical OR) create a larger sufficient expression ac-
counting for all observed, empirical evidence.
The QMC minimization procedure is a two-level algorithm, the first phase
identifying the prime implicants and the second solving the PI chart. Both
are quite technical and could be described in a separate annex.

8.1 Command Line and GUI Dialog 161

8.1 Command Line and GUI Dialog

Version 3.0 of package QCA brought important changes in the structure of
the main minimize() function. Like all previous updates of the package, a lot
of effort is being invested to make these changes backwards compatible, so
that old code will still work in the new version.
The new structure is more simple, more clear and most of all more logical. The
previous one was perpetuated from version to version, for historical reasons
since the first version(s) of the package. In the beginning, the minimize()
function had a dataset as an input, for which an outcome and some conditions
were specified, and it followed the normal procedure to construct a truth table
and perform the minimization. Later, a separate truth table was created, that
function minimize() was calling behind the scenes.
But the normal input for the minimization procedure is a truth table, not a
dataset. The function was designed to detect when the input is a dataset or a
truth table, and if a dataset it would call the truthTable() function to create
the actual input for the minimization. It amounts to the same thing, just less
visible for the user.
Most of the arguments in the minimize() functions had nothing to do with
the minimization process, they were just served to the truthTable() function.
The only benefit of directly using a dataset instead of a truth table, is the
specification of multiple outcomes to mimic CNA (details in Sect. 10.2).
Since they did not belong to the minimization function per se, arguments
such as outcome, conditions, incl.cut, n.cut, show.cases are now removed
as formal arguments for the function minimize(). The change is backwards
compatible and it is still possible to specify these arguments, but they are
passed to function truthTable(). The function now has the following form:

minimize(input, include = "", exclude = NULL, dir.exp = "", pi.cons = 0,
pi.depth = 0, sol.cons = 0, sol.cov = 1, sol.depth = 0,
min.pin = FALSE, row.dom = FALSE, all.sol = FALSE,
details = FALSE, use.tilde = FALSE, method = "CCubes", ...)

The current formal arguments are specific to the minimization process, as it
should logically be the case. The other previous formal arguments are now
detected via the three dots “...” argument, and dealt with according to the
situation. But truth table construction and minimization are two separate
activities, and the new structure makes this more obvious.
Among others, the first argument is now called input instead of data, driven
by the same idea that a normal input is not a dataset, but a truth table. The
same change is also reflected in the graphical user interface dialog, that can
be opened with the following menu:

162 8 The Logical Minimization

Dataset TT

Run

Quine-McCluskey minimization

Outcome: Conditions:

? C

show cases

use letters

negate outcome

Assign

Include

Exclude

consistency

coverage 1

0

PI consistencyuse tilde

row dominance

maximal solutions Search solutions by:

show details

0PI depthSolution depth 0

cut-off:

1

1frequency

inclusion 1

inclusion 0

0

Fig. 8.2 The starting minimization dialog

Analyse/Minimization
This is one of the most complex dialogs in the entire graphical user interface,
and it makes full use of the newly added feature to display and use multiple
objects at the same time. Many of the options will be presented in the next
sections, for the moment we will cover the absolute basics.
First of all, in the upper left part of the dialog there is a radio button with
two options: Dataset and TT, with a default on the TT meaning the truth
table. Figure 8.2 displays nothing in the space underneath that radio button,
because no truth tables have been assigned to particular objects. Truth tables
can be created for visualization purposes only, but once the user is certain a
truth table is ready for minimization, it should be assigned to an object.
Before creating one to see the difference, since all versions of the Lipset
datasets (binary crisp, multi-value and fuzzy) are already loaded from the
previous sections, a click on the Dataset option of the radio button displays
those datasets, along with the columns from the dataset being selected, as in
Fig. 8.3.
Only when the Dataset radio option is selected, will the options above the
horizontal separator become available. As the input is not a truth table but a
regular dataset, these options will no longer be greyed out and can be modified,
just like their exact counterparts in the truth table dialog.

8.2 Conservative (Complex) Solutions 163

Dataset TT Outcome:
DEV
URB
LIT
IND
STB
SURV

Conditions:
DEV

LIT
IND
STB
SURV

URB
LC
LF
LM

Fig. 8.3 Dataset option in the minimization dialog

Back to the main dialog in Fig. 8.2, another important change in the user
interface is a slight re-arrangement of the check-boxes and textbox inputs.
This rearrangement reflects the change in the written command arguments,
but more importantly separates the options specific to the truth table from
the options specific to the minimization process.
The horizontal separator between the two groups of options is new, and an-
other important and visible modification is that options specific to the truth
table (above the separator) are now greyed out. It means that, when the upper
left radio button is set for the TT option, the user cannot modify the options
specific to the truth table (more details in Sect. 8.2).
The space below the Include and Exclude options is empty for now, but
will be populated with even more options when using directional expectations,
with examples at Sect. 8.7.

8.2 Conservative (Complex) Solutions

A conservative solution is obtained with the classical QMC algorithm pre-
sented at the beginning of this chapter. It takes the cases where the outcome
is present, and performs the necessary minimizations, in successive iterations,
until the simplest prime implicants are generated.
Much like in the electrical engineering, the conservative solution is focused on
the expressions associated with the presence of the outcome. Back in the days
of McCluskey, the purpose of the minimization procedure was (and still is) to
create a cheaper circuit that does something. It would be pointless to create
an elaborate algorithm for something that does not produce any result.
Rather, the purpose of the classical QMC algorithm is to find the shortest,
most simple expression that is equivalent with the initial positive configura-
tions. This is the reason why, despite empirical evidence for configurations
where the output is not present, the classical QMC algorithm ignores that
evidence and focuses strictly on the configurations with a positive output.

164 8 The Logical Minimization

Actually, the QMC algorithm is agnostic not only about observed empirical
evidence for the negative output, but also about configurations with unknown
output (where there is too little or no empirical evidence to assess the value
of the output) and also about contradictions. All of those are ignored as if
they are unknown, and the only empirical evidence that is used as input for
the classical QMC function is the set of positive output configurations.
Unless a configuration has its output value changed to positive one, it does
not play any role whatsoever in the minimization process, therefore it does
not contribute to the final result.
It is the very reason why the solution is called “conservative”, because it
does not make any assumptions about any other configurations (most notably
the remainders) but those with a positive outcome. It is conservative when
compared with the parsimonious solution (presented in the next section) which
includes the remainders, hence making counterfactual assumptions for which
little or no empirical evidence exists.
It is also called “complex”, because although the solution is a more simple
expression than the initial configurations, the parsimonious solutions is even
more simple (contains fewer literals). The conservative solutions is complex
compared to the parsimonious solution, and the other way round, but both
are equivalent to (and more simple than) the initial configurations.
To have an example of conservative minimization, a truth table has to exist
in the workspace (assigned to an object) for function minimize() to find it.
Using the crisp version of the Lipset data, it is assigned to object ttLC:

ttLC <- truthTable(LC, outcome = "SURV", incl.cut = 0.9, show.cases = TRUE)

Once this command is run, or its equivalent clicks in the truth table dialog
from the graphical user interface, the options in the minimization dialog are
automatically changed, as shown in Fig. 8.4.
The options above the separator, as well as the output and the conditions
(all specific to the selected truth table), are still greyed out and cannot be
modified. That happens because the truth table already exists, thus it does
not make sense to modify things from an already created object. Modifying a
truth table, or creating a new one with different options, should be done from
the truth table dialog itself, or by modifying the equivalent written command
(the new object will immediately become visible in the dialog).
However, the truth table options displayed in the minimization dialog are
informative, especially if there are multiple truth tables to choose from. Se-
lecting any existing truth table object will automatically refresh the options
used at the time they were created. In this example, we used an inclusion
cut-off equal to 0.9 and clicked on the option show cases.
Assigning the result of the minimization to the object consLC is left optional
to the user. If not assigned, the result is simply printed on the screen (for the

8.2 Conservative (Complex) Solutions 165

cut-off:

1frequency

inclusion 1

inclusion 0

0.8

consistency

coverage 1

0

PI consistencyuse tilde

row dominance

maximal solutions Search solutions by:

show details

0PI depthSolution depth 0

Dataset TT Outcome:
DEV
URB
LIT
IND
STB
SURV

Conditions:
DEV

IND
STB
SURV

B
ttLC

Assign to: Run

DEV
URB
LIT
IND
STB
SURV

DEV

IND
STB
SURVRR

B

cLC

show cases

use letters

negate outcomeInclude

Exclude

C?

0

Quine-McCluskey minimization

Fig. 8.4 The minimization dialog using an existing truth table

graphical user interface, in the web R console), but otherwise it is always a
good idea to assign the results to an object for the simplest reason that it
contains a lot more information than what is printed on the screen.
The minimization dialog, as presented on the screen, amounts to the follow-
ing automatically generated command, in the command constructor dialog
(Fig. 8.5).

Command constructor

Fig. 8.5 The minimization command, auto-constructed from the dialog

There are three positive configurations in the object ttLC (numbers 22, 24
and 32, they can be found in the equivalent truth table from Sect. 7.1):
DEV·urb·LIT·ind·STB +DEV·urb·LIT·INT·STB +DEV·URB·LIT·INT·STB
The minimization procedure produces two prime implicants in a disjunctive
expression that is not only simpler and equivalent to the initial three config-
urations, but most of all it is both necessary and sufficient for the outcome:
DEV·urb·LIT·STB + DEV·LIT·IND·STB

166 8 The Logical Minimization

consLC <- minimize(ttLC, details = TRUE)
consLC

n OUT = 1/0/C: 8/10/0
Total : 18

Number of multiple-covered cases: 2

M1: DEV*urb*LIT*STB + DEV*LIT*IND*STB <=> SURV

inclS PRI covS covU cases
--
1 DEV*urb*LIT*STB 1.000 1.000 0.500 0.250 FI,IE; FR,SE
2 DEV*LIT*IND*STB 1.000 1.000 0.750 0.500 FR,SE; BE,CZ,NL,UK
--

M1 1.000 1.000 1.000

It may not seem much, but with only three positive configurations the mini-
mized solution cannot be expected to be more parsimonious than that. As a
rule of thumb, the more positive configurations enter the minimization process,
the more parsimonious the final solution(s) will get.
Notice that cases were printed in the parameters of fit table, even though not
specifically required by the function minimize(). This is possible because that
option is inherited from the input truth table ttLC.
Also note the relation <=> signals both necessity and sufficiency. Since this is
a sufficiency solution, all prime implicants are sufficient; the necessity relation
appears when the coverage for the solution (in this case 1.000) is at least as
high as the inclusion cut-off.
The object consLC is also structured as an R list with many other components,
and some of them are going to play a pivotal role in the next sections:

names(consLC)

[1] "tt" "options" "negatives" "initials" "PIchart"
[6] "primes" "solution" "essential" "inputcases" "pims"

[11] "IC" "numbers" "SA" "call"

The interesting one for this section is the prime implicants chart:

consLC$PIchart

22 24 32
DEV*urb*LIT*STB x x -
DEV*LIT*IND*STB - x x

As expected, the chart shows the three initial primitive expressions, with both
prime implicants needed to cover them.

8.3 What Is Explained 167

8.3 What Is Explained

Before approaching the parsimonious solution, it is the right moment to con-
centrate on the defunct argument explain from function minimize(). The
structure of the function used to have the explained value as "1" and it
seemed redundant, for what could it possibly be explained other than the
positive output? Remainders cannot be explained, as they are unobserved,
perhaps contradictions but they are very few and seldom encountered.
More plausible is the negative output, and that generates a huge confusion.
The negative output is many times mistaken with the negation of the outcome,
but they are very different things. Consider the binary crisp Lipset data:

truthTable(LC, outcome = "SURV")

OUT: output value
n: number of cases in configuration

incl: sufficiency inclusion score
PRI: proportional reduction in inconsistency

DEV URB LIT IND STB OUT n incl PRI
1 0 0 0 0 0 0 3 0.000 0.000
2 0 0 0 0 1 0 2 0.000 0.000
5 0 0 1 0 0 0 2 0.000 0.000
6 0 0 1 0 1 0 1 0.000 0.000

22 1 0 1 0 1 1 2 1.000 1.000
23 1 0 1 1 0 0 1 0.000 0.000
24 1 0 1 1 1 1 2 1.000 1.000
31 1 1 1 1 0 0 1 0.000 0.000
32 1 1 1 1 1 1 4 1.000 1.000

When negating the outcome, notice how the output values are simply inverted:

truthTable(LC, outcome = "~SURV")

OUT: output value
n: number of cases in configuration

incl: sufficiency inclusion score
PRI: proportional reduction in inconsistency

DEV URB LIT IND STB OUT n incl PRI
1 0 0 0 0 0 1 3 1.000 1.000
2 0 0 0 0 1 1 2 1.000 1.000
5 0 0 1 0 0 1 2 1.000 1.000
6 0 0 1 0 1 1 1 1.000 1.000

22 1 0 1 0 1 0 2 0.000 0.000
23 1 0 1 1 0 1 1 1.000 1.000
24 1 0 1 1 1 0 2 0.000 0.000
31 1 1 1 1 0 1 1 1.000 1.000
32 1 1 1 1 1 0 4 0.000 0.000

168 8 The Logical Minimization

This is a situation with perfect consistency scores (either 1 or 0), and indeed
explaining the negative output or negating the outcome lead both to exactly
the same solutions, hence it is understandable how matters can be confused.
But truth tables do not always display perfect consistencies, as in the following
two examples:

truthTable(LC, outcome = "SURV", conditions = "DEV, URB, LIT, IND")

OUT: output value
n: number of cases in configuration

incl: sufficiency inclusion score
PRI: proportional reduction in inconsistency

DEV URB LIT IND OUT n incl PRI
1 0 0 0 0 0 5 0.000 0.000
3 0 0 1 0 0 3 0.000 0.000

11 1 0 1 0 1 2 1.000 1.000
12 1 0 1 1 0 3 0.667 0.667
16 1 1 1 1 0 5 0.800 0.800

While the upper three configurations have perfect consistencies, notice the
bottom two configurations that have less perfect scores and their output values
remain negative after negating the outcome:

truthTable(LC, outcome = "~SURV", conditions = "DEV, URB, LIT, IND")

OUT: output value
n: number of cases in configuration

incl: sufficiency inclusion score
PRI: proportional reduction in inconsistency

DEV URB LIT IND OUT n incl PRI
1 0 0 0 0 1 5 1.000 1.000
3 0 0 1 0 1 3 1.000 1.000

11 1 0 1 0 0 2 0.000 0.000
12 1 0 1 1 0 3 0.333 0.333
16 1 1 1 1 0 5 0.200 0.200

Explaining the negative output for the presence of the outcome (rows "1",
"3", "11" and "16" in the first) would definitely not give the same solutions
as explaining the positive output for the negation of the outcome (rows "1"
and "3" in the second), the configurations entering the minimization process
being different from their complementary set of configurations in the first
truth table.
Hopefully, this digression makes it clear that explaining the negative output
doesn’t make any sense: it is not the same thing as negating the outcome,
and it is meaningless to explain configurations having consistencies below the
inclusion cut-off. All of this becomes much clear if refraining from directly
minimizing the data and produce truth tables beforehand.

8.3 What Is Explained 169

Conversely, as it most likely is the case, users who are not aware of the dif-
ference simply trust the software knows what it’s doing. That is always a
danger.
For this reason, starting with version 3.0 the package QCA outputs an error
when trying to explain or include negative outputs. Taking remainders away,
since by definition they cannot be explained, the only other value of the output
that remains to discuss is represented by the contradictions.
The difference between explaining and including contradictions is found in
the construction of PI charts, where the primitive expressions in the columns
are represented by the explained configurations:
• explaining contradictions (in addition to positive outputs) results in adding

more columns to the prime implicants chart;
• including the contradictions, they are treated similar to remainders, con-

tributing in the minimization process but not affecting the PI chart;
• if neither explaining, nor including the contradictions, they are by default

treated as negative output configurations.
As an example, we will again reproduce the truth table containing for the
fuzzy version of the Lipset data tweaking the inclusion cut-offs to produce
more contradictions:

ttLF1 <- truthTable(LF, outcome = "SURV", incl.cut = c(0.8, 0.5))
ttLF1

OUT: output value
n: number of cases in configuration

incl: sufficiency inclusion score
PRI: proportional reduction in inconsistency

DEV URB LIT IND STB OUT n incl PRI
1 0 0 0 0 0 0 3 0.216 0.000
2 0 0 0 0 1 0 2 0.278 0.000
5 0 0 1 0 0 C 2 0.521 0.113
6 0 0 1 0 1 C 1 0.529 0.228

22 1 0 1 0 1 1 2 0.804 0.719
23 1 0 1 1 0 0 1 0.378 0.040
24 1 0 1 1 1 C 2 0.709 0.634
31 1 1 1 1 0 0 1 0.445 0.050
32 1 1 1 1 1 1 4 0.904 0.886

First inspect the complex solution and the associated PI chart when explaining
the contradictions:

minimize(ttLF1, explain = "1, C")

M1: dev*urb*LIT*ind + DEV*LIT*IND*STB + (DEV*urb*LIT*STB) => SURV
M2: dev*urb*LIT*ind + DEV*LIT*IND*STB + (urb*LIT*ind*STB) => SURV

170 8 The Logical Minimization

minimize(ttLF1, explain = "1, C")$PIchart

5 6 22 24 32
dev*urb*LIT*ind x x - - -
DEV*urb*LIT*STB - - x x -
DEV*LIT*IND*STB - - - x x
urb*LIT*ind*STB - x x - -

The same solution, with the same prime implicants and the same PI chart can
be produced by lowering the inclusion cut-off until all contradictions become
explained:

ttLF2 <- truthTable(LF, outcome = "SURV", incl.cut = 0.5)
minimize(ttLF2)

M1: dev*urb*LIT*ind + DEV*LIT*IND*STB + (DEV*urb*LIT*STB) => SURV
M2: dev*urb*LIT*ind + DEV*LIT*IND*STB + (urb*LIT*ind*STB) => SURV

minimize(ttLF2)$PIchart

5 6 22 24 32
dev*urb*LIT*ind x x - - -
DEV*urb*LIT*STB - - x x -
DEV*LIT*IND*STB - - - x x
urb*LIT*ind*STB - x x - -

As it can be seen, choosing to add the contradictions in the explain argument
(along with the positive output) or lowering the inclusion cut-off until the
contradictions become explained (they would be allocated a positive output
themselves), lead to the same complex solutions.
A similar phenomenon happens when including the remainders:

minimize(ttLF1, explain = "1, C", include = "?")

M1: dev*LIT + DEV*STB => SURV
M2: dev*LIT + LIT*STB => SURV
M3: DEV*STB + LIT*ind => SURV
M4: LIT*ind + LIT*STB => SURV
M5: LIT*ind + IND*STB => SURV

minimize(ttLF2, include = "?")

M1: dev*LIT + DEV*STB => SURV
M2: dev*LIT + LIT*STB => SURV
M3: DEV*STB + LIT*ind => SURV
M4: LIT*ind + LIT*STB => SURV
M5: LIT*ind + IND*STB => SURV

8.3 What Is Explained 171

The solutions are again identical, which is to be expected since the PI charts
are also identical:

minimize(ttLF1, explain = "1, C", include = "?")$PIchart

5 6 22 24 32
dev*LIT x x - - -
DEV*ind - - x - -
DEV*STB - - x x x
URB*STB - - - - x
LIT*ind x x x - -
LIT*STB - x x x x
IND*STB - - - x x

minimize(ttLF2, include = "?")$PIchart

5 6 22 24 32
dev*LIT x x - - -
DEV*ind - - x - -
DEV*STB - - x x x
URB*STB - - - - x
LIT*ind x x x - -
LIT*STB - x x x x
IND*STB - - - x x

This proves that explaining contradictions is meaningless because it leads to
exactly the same solutions as lowering the inclusion cutoff. It is an important
observation, leaving the argument explain with only one logically possible
value (positive output configurations) and that makes it redundant.
It has survived through different software, from one version to another, since
the beginning of crisp sets QCA when fuzzy sets and consistency scores have
not been introduced yet. But once consistency scores made their way into the
truth table, this argument should have been abandoned, for as it turns out no
other output except the positive one makes any logical sense to explain. And
since "1" is the default value, it is perhaps the reason why most of the times
this argument is not even explicitly mentioned in users’ commands.

Include

Exclude

? C

Fig. 8.6 The “Include” and “Exclude” tuple in the minimization dialog

In the graphical user interface, the argument include is located in the left
part of the minimization dialog (Fig. 8.6), above another argument exclude
that will be introduced later. Although specific to function minimize(), they
are located above the separating line at the same level with the truth table
options, which seems logical since they refer to the output values in the truth
table.

172 8 The Logical Minimization

8.4 Parsimonious Solutions

A parsimonious solution is a more simplified but equivalent expression, com-
pared to the complex solution. It is obtained by employing a less conservative
approach over the empirical evidence and include remainders in the minimiza-
tion process. Before delving into the technical details of this solution, some
preliminary considerations need to be made about the problem of limited di-
versity and the different strategies to deal with this problem in social research
methodology.
Conventional statistical analysis manages to produce rather accurate predic-
tions for the values in the dependent variable, even in the absence of empirical
information. It does that by inferring the information drawn from existing ev-
idence can be extrapolated to empty areas where no such evidence exists. The
simplest example is the linear regression model, where all predicted values are
deterministically located on the regression line.
Things are rather clear for a scatterplot with the relation between the inde-
pendent and the dependent variable, and even for a 3D scatterplot with two
independent variables versus the dependent, the prediction being made on
the regression (hyper)plane. It is easy to visualize where the points are (the
empirical data), and where there are no points to make predictions.
Once the number of independent variables grows, visualizing empty areas
becomes much more difficult and the inference is usually accepted as a natural
expansion from the simple 2D or 3D examples to a k-dimensional cube (vector
space), with some strong assumptions like the multivariate normality.
But it is a fact, as Ragin and Sonnett (2008) eloquently point out, that social
reality is very limited in its diversity. This should not be confused with a
limited number of cases (the small-N or medium-N research situation), instead
it actually refers to a limited number of empirically observed configurations
in the truth table. It does not matter how large the data is (how many cases
it has), if all of them cluster in a few such configurations.
Thompson (2011) analyzed the 1970 Birth Cohort Study (BCS70) in UK,
a large study with no less than 17,000 cases and still ran into the problem
of limited diversity. Whatever we empirically observe seems to cover a very
small area of the entire vector space, and for the biggest part of this space
researchers either make strong assumptions to extrapolate the model through
statistical regularities, or engage in counterfactual analysis.
This aspect of limited diversity is well addressed in the QCA methodology,
due to the very structure of the truth table that not only guides researchers
to think in terms of configurations but more importantly shows exactly how
much (or how small) empirical evidence exists in the property space. Unlike
the quantitative methodology where areas empty of empirical evidence are
covered by an estimated underlying distribution, QCA uses exclusively the

8.4 Parsimonious Solutions 173

existing evidence to map the property space and specifically expose all un-
known configurations.
The normal scientific way to deal with lack of evidence (non-existence or
incomplete data) is to perform experiments and produce the data needed to
formulate theories. Science is driven by curiosity, and where such experiments
are possible researchers engage into an active process of discovery by tweaking
various input parameters and observe if (and how much) the outcome changes.
But social sciences are not experimental, researchers being unable to tweak
the input parameters. Being left with the observed empirical information at
hand, they conduct thought experiments involving counterfactual analysis.
In the absence of direct evidence for critical cases to compare against, re-
searchers often resort to the question “What if. . . ?” and begin wondering
what the reality would be like, if things in the past would have been differ-
ent. Such counterfactual thinking can be traced back to Hume (1999, p. 146),
where in his definition of causation the following statement is found:

. . . if the first object had not been, the second never had existed.

This is a clear counterfactual statement, and social sciences (especially in the
qualitative research tradition) abounds in such statements particularly if the
events being studied are rare, such as state revolutions, as the complex reality
is reduced to an abstract concept (the ideal type) that does not exist in the
reality, for which there is no empirical evidence to claim its existence.
It seems that counterfactual thinking is not only desirable, but actually in-
dispensable to advance social research. In QCA, all remainders are potential
counterfactual statements that can be used to further minimize the observed
configurations. The decision to include remainders in the minimization makes
the implicit assumption that, should it be possible to empirically observe these
configurations, they would have a positive output.
But this is a very serious assumption(!) that can be subjected to immedi-
ate question marks, mainly to how impossible configurations contribute to a
meaningful minimal solution, or how remainders that contradict our theory
contribute to a solution that confirms the theory. Such issues will be dealt
with, in the next sections.
Existing software make it extremely easy to add remainders in the minimiza-
tion process, and most likely (depending on how large the truth table is and
how many empirical configurations do exist) the solutions will be less complex.
There is a high temptation to rush and find the simplest possible (most parsi-
monious) solution, indiscriminately throwing anything into the minimization
routine, something similar to grabbing all available ingredients from a kitchen
and lump everything into the oven to make food. But not all ingredients go
well together, and not all of them can be cooked in the oven.

174 8 The Logical Minimization

Fortunately the “food” can be inspected post-hoc, after the minimization, but
for the moment it is good to at least be alert of the situation. Either before
the minimization, or post (or even better before and post) the minimization,
the structure of the remainders should constantly be monitored.
For the pure parsimonious solution, the argument of interest in function
minimize() was already introduced. It is include, specifying which of the
other output values ("?" and "C") are included in the minimization process.
The Quine-McCluskey algorithm treats remainders as having the same output
value as the explained configurations, but they will not be used to construct
the PI chart as remainders are not primitive expressions.
Having a truth table object available, the simplest form of the minimization
command is:

ttLF <- truthTable(LF, outcome = "SURV", incl.cut = 0.8, show.cases =TRUE)
minimize(ttLF, include = "?")

M1: DEV*ind + URB*STB => SURV

This command outputs just the most parsimonious solution, without any other
details about the parameters of fit. It also uses by default upper case letters
for their presence and lower case letters for their absence. Choosing to print
the details, and to using a tilde to signal a negated (absent) condition, the
command and the output changes to:

minimize(ttLF, include = "?", details = TRUE)

n OUT = 1/0/C: 6/12/0
Total : 18

Number of multiple-covered cases: 0

M1: DEV*ind + URB*STB => SURV

inclS PRI covS covU cases

1 DEV*ind 0.815 0.721 0.284 0.194 FI,IE
2 URB*STB 0.874 0.845 0.520 0.430 BE,CZ,NL,UK

M1 0.850 0.819 0.714

In the table containing the parameters of fit, there are two sufficient conjunc-
tions, each covering part of the empirically observed positive configurations.
They are displayed with a logical OR relation, either one being sufficient for
some of the positive configurations, but both are needed to cover all of them.
Both are highly consistent sufficient expressions but their cumulated unique
coverage is lower, suggesting there is some more space in the outcome set that
remains unexplained (Fig. 8.7).

8.4 Parsimonious Solutions 175

cut-off:

1frequency

inclusion 1

inclusion 0

0.8

consistency

coverage 1

0

PI consistencyuse tilde

row dominance

maximal solutions Search solutions by:

show details

0PI depthSolution depth 0

0

DEV
URB
LIT
IND
STB
SURV

ttLC
Dataset TT Outcome: Conditions:

DEV
URB
LIT
IND
STB

SURV

pLF Run

Include

Exclude

? C

Assign to:

Directional exps:

ttLF B
DEV

IND
STB

DEV
URB
LIT
IND
STB
SURV SURVRR

B
DEV

IND
STB

show cases

use letters

negate outcome

Quine-McCluskey minimization

Fig. 8.7 Including remainders using the minimization GUI dialog

In the dialog from the graphical user interface, the options being selected
accurately reflect the written minimization command: the remainders "?" are
selected, and the checkboxes show details and use tilde are checked. A
notable aspect is the display of the cases in the parameters of fit table, this
option being inherited from the truth table used as input for the minimization.
Below the separating line there are some other options, where depth has
two sets of counters, one for a maximum number of conditions in conjunctive
prime implicants, and the other for a maximum number of prime implicants
in disjunctive solutions. At the default value equal to 0, it signals an exhaus-
tive search for all possible PIs and all possible solutions. The solution depth
is useful only when maximal solutions is checked, and/or the consistency
threshold for the solution is lower than 1.
The other two options in the left side are specific to solving the prime im-
plicants chart. The row dominance option eliminates irrelevant PIs from
the truth table before finding the minimal solutions, if they are covered by
other prime implicants. Finally, maximal solutions finds all possible non-
redundant disjunctions of prime implicants that cover all initial, truth table
positive configurations, even if not minimal. It is mainly used to mimic CNA,
discussed in Sect. 10.2.

176 8 The Logical Minimization

8.5 A Note on Complexity

Describing the Standard Analysis procedure, Schneider and Wagemann (2012,
p. 161) introduce three dimensions to classify the types of solutions obtained
using different logical remainders:
1. set relation
2. complexity
3. type of counterfactuals
Having analyzed all possible combinations of remainders from their truth table
to include in the minimization, they meticulously show that the parsimonious
solution is the least complex one, and it is a superset of not only the complex
solution but also of all other solutions using various remainders.
Defining the complexity of a solution “. . . by the number of conditions and
the logical operators AND and OR that it involves . . . ”, they advise to refrain
from using the alternative name of “complex” solution, for the conservative
one, because some of the solutions involving remainders are even more complex
than the complex one (which does not make any assumption on, and does not
include any remainders).
While certainly valid from a logical point of view, Schneider and Wagemann’s
conclusions are not quite right from an objective point of view. Their truth
table can be replicated with the following commands:

SW <- data.frame(A = c(0, 0, 0, 1, 1), B = c(0, 1, 1, 0, 1),
C = c(1, 0, 1, 1, 0), Y = c(1, 0, 0, 1, 1))

ttSW <- truthTable(SW, outcome = "Y", complete = TRUE)
ttSW

OUT: output value
n: number of cases in configuration

incl: sufficiency inclusion score
PRI: proportional reduction in inconsistency

A B C OUT n incl PRI
1 0 0 0 ? 0 - -
2 0 0 1 1 1 1.000 1.000
3 0 1 0 0 1 0.000 0.000
4 0 1 1 0 1 0.000 0.000
5 1 0 0 ? 0 - -
6 1 0 1 1 1 1.000 1.000
7 1 1 0 1 1 1.000 1.000
8 1 1 1 ? 0 - -

The row numbers are not the same, their ordering being a bit different from
those in package QCA where they represent the base 10 conversion from base
2, but all configurations are identical for the three positive ones (001, 101, 110),

8.5 A Note on Complexity 177

for the two negative ones (010, 011) and finally for the three remainders left
(000, 100, 111).
For three remainders, there are eight possible way to use them in the mini-
mization process, from none (the equivalent of the conservative solution) to
all (leading to the parsimonious solution). Schneider and Wagemann then
show their solution (e) that includes only the remainder 000 leads to the most
complex solution: ∼A·∼B + ∼B·C + A·B·∼C.
However, the actual solution using that remainder does not seem to entirely
coincide:

pSW <- minimize(ttSW, include = "?", exclude = c(5, 8), use.tilde = TRUE)
pSW

M1: ~B*C + A*B*~C <=> Y

This command can be translated as “include all remainders except those from
row numbers 5 and 8”, and of course since there are only three remainders it
means that only one is actually included (row number 1, that is 000).
But it is obvious this solution is not the same with Schneider and Wagemann’s.
It most likely happened because they tried to explain the remainder (which
doesn’t make sense), instead of just including it in the minimization. That
affected the PI chart, which is supposed to have only as many columns as the
initial number of primitive expressions (in this situation, three).
Consequently, their PI chart contains an additional column:

1 2 6 7
~A*~B x x - -
~B*C - x x -
A*B*~C - - - x

while the correct PI chart renders ∼A·∼B as irrelevant (it is dominated):

pSW$PIchart

2 6 7
~A*~B x - -
~B*C x x -
A*B*~C - - x

The purpose of this demonstration is less to point the finger to a reasonable
and easy to make error, but more to restate that as it turns out, no other
solution can be more complex than the conservative one. At best, other so-
lutions can be equally complex therefore the word “complex” doesn’t always
identify with the conservative solution. I would also advocate using the word
“conservative”, for the same stated, and more important reason that it does
not make any assumption on the remainders.

178 8 The Logical Minimization

8.6 Types of Counterfactuals

This is one of the most informationally intensive sections from the entire
analysis of sufficiency, and at the same time the pinnacle of all the information
presented so far. Everything that has been introduced up to this point, plus
many others, is extensively used in what is about the follow.
If things like constructing a truth table or logical minimization are relatively
clear, this section contains an entire host of additional concepts where many
overlap in both understanding and dimensionality. Users who possess at least
a minimal understanding of what QCA is used for, undoubtedly heard about
remainders, directional expectations, different types of counterfactuals (easy
and difficult, impossible, implausible, incoherent), simplifying assumptions,
contradictory simplifying assumptions, tenable and untenable assumptions,
all within the context of Standard Analysis, Enhanced Standard Analysis,
Theory-Guided Enhanced Standard Analysis etc.
Without a deep understanding of each such concept, they tend to gravitate
around in a spinning motion that can provoke a serious headache. It is there-
fore mandatory to have a thorough introduction for these concepts, before
using the R code in package QCA. Most of them are already discussed and
properly introduced in multiple other places, see Ragin and Sonnett (2005),
Ragin (2008b), Schneider and Wagemann (2012, 2013) to name the most im-
portant ones. Some of these concepts are going to be deepened in Chap. 10,
therefore the beginning of this section is not meant to replace all of those
important lectures but mainly to facilitate their understanding.
It should be clear, however, that all of these concepts are connected to the
remainders and how are they included, filtered or even excluded from the
minimization process to obtain a certain solution.
In this book, the terms “counterfactuals” and “remainders” can be used inter-
changeably. They are synonyms and refer to one and the same thing: causal
configurations that, due to the issue of limited diversity in social phenomena,
have no empirical evidence. They are unobserved configurations which, if by
any chance would be observed, could contribute in the minimization process
to obtain a more parsimonious solution.
In Sect. 8.5, I showed that the parsimonious solution is the least complex one,
and no other solution is more complex than the conservative one, leading to
the following Complexity rule:

Any remainder included in the minimization process can only make the solution
simpler. Never more complex, always more and more parsimonious.

To the limit, when all remainders are included in the minimization, the final
solution is “the” most parsimonious solution.

8.6 Types of Counterfactuals 179

Simplifying Assumptions

Untenable
Assumptions

Tenable
Assumptions

Good
Counterfactuals

Easy
Counterfactuals

Difficult
Counterfactuals

Remainders / CounterfactualsEmpirically
observed

1 0

UA

Fig. 8.8 The truth table composition

Figure 8.8 is yet another attempt to classify the remainders based on the
current theory, using a linear approach and various vertical separators. The
first delimitation is made between the empirically observed configurations and
the remainders (counterfactuals). Among those empirically observed, some
configurations have a positive output, while some have a negative output (for
simplicity, this figure assumes there are no contradictions).
Among the remainders on the right hand side of the figure:
• some are simplifying assumptions and some are not (simplifying meaning

they contribute to the logical minimization)
• the simplifying assumptions is a set composed from the easy counterfactuals

and the difficult counterfactuals
• remainders which are not simplifying assumptions can be simply good coun-

terfactuals (that don’t have any logical difficulties, but don’t contribute to
the logical minimization), or untenable assumptions

• easy counterfactuals are also good counterfactuals, but some are also part
of the tenable assumptions

• some of the difficult counterfactuals are also tenable, while some are unten-
able etc.

The meaning for all of these is going to be gradually unfolded. They are all
connected with the moment when QCA theoreticians realized that not all
remainders can be used as counterfactuals.
A very simple example is the relation between the presence of the air (as a
trivial necessary condition) and the existence of a big fire in a city. Undoubt-
edly, the air is not a cause for a fire, but on the other hand a fire without air
is impossible in normal situations.
There are numerous non-trivial causes for a fire, and a researcher might select
5 or 6 most commonly observed conditions (among which the necessary air).
Due to the limited diversity, many of the 64 logically possible configurations
are not empirically observed, and they could be used as counterfactuals for
the parsimonious solution.
The problem is that many of the remainders also contain the absence of air.

180 8 The Logical Minimization

According to the Complexity rule, any remainder has the potential to make
the solution less and less complex, including those where the air is absent. But
such remainders are difficult counterfactuals, despite making the solution sim-
pler, since they contradict all our knowledge about how a fire is maintained.
For any given phenomenon (outcome) of interest, there is some established the-
oretical corpus that guides the research and offers a number of hints about how
causal conditions should contribute to the presence of that outcome. These
can be called directional expectations.
We expect air to be present when a fire is produced, therefore all remainders
that do not conform to this expectation are difficult. To put it differently, it
would be very difficult to explain how did we arrive at a minimal explanation
(solution) about the presence of fire, involving remainders associated with the
absence of air in the minimization.
For this reason, out of all possible remainders in the truth table, a sensible
decision would be to filter out those which contradict our theory. By contrast,
those remainders which are accepted in the minimization process are called
easy counterfactuals, because they are in line with our current knowledge.
With a good part of the remainders out of the minimization, it is clear the
final solution will not be the most parsimonious one. It will be less complex
compared with the conservative solution, but more complex than the parsi-
monious one. This is a key idea presented by Ragin and Sonnett (2005), who
introduced the concepts of easy and difficult counterfactuals in QCA.
Later, Ragin (2008b) wrapped up the whole procedure which is today known
as the Standard Analysis, that produces three types of solutions: conservative,
intermediate and parsimonious.
To reach the parsimonious solution, all remainders are included in the mini-
mization process. But not all of them really contribute to the minimization,
some of the pairs being compared differ by more than one literal, hence they
don’t produce implicants for the next iterations. Consequently, part of the
remainders are never used in the minimization. Those remainders that do
help producing prime implicants are called Simplifying Assumptions and, as
shown in Fig. 8.8 they are composed from the Easy Counterfactuals plus the
Difficult Counterfactuals:

SA= EC+DC

This is as far as the Standard Analysis goes, separating the simplifying as-
sumptions from all remainders, and differentiating between easy and difficult
counterfactuals. This model would be extremely effective if not for the red
area located right in the middle of the easy counterfactuals segment. It is
called UA, part of a category identified by Schneider and Wagemann (2013),
and dubbed the Untenable Assumptions.

8.6 Types of Counterfactuals 181

Many things can be Untenable Assumptions:
• logical impossibilities (the famous example of the pregnant man);
• contradictory simplifying assumptions that end up being sufficient for both

the outcome and its negation (Yamasaki and Rihoux 2009);
• a most interesting category of that combines the analysis of sufficiency with

the analysis of necessity.
The later category is part of the incoherent counterfactuals, and makes a full
use of the mirror effect between necessity and sufficiency: when a condition is
identified as necessary for an outcome Y, it is a superset of the outcome. The
negation of the condition, therefore, cannot be assumed to be sufficient for
the outcome for it would need to be a subset of the outcome (to be sufficient).
But since the condition itself is bigger than the outcome set, what is outside
the condition (∼X) is by definition outside the outcome set: it has no inclusion
in the outcome (it would be illogical to think otherwise), as it can be seen in
Fig. 8.9.

Y

X

Y

∼X

X

Fig. 8.9 ∼X %⇒ Y (left, ∼X not a subset of Y), while X ⇒ Y (right, X is a subset of Y)

This is one of the key aspects put forward by Schneider and Wagemann (2013)
and poorly understood by some QCA users (Thiem 2016), as it was shown in
Sect. 5.5.
Indeed, when a condition (more generally a phenomenon) is necessary for
an outcome, its negation cannot be at the same time sufficient for the same
outcome, therefore any counterfactual containing the negation of a necessary
condition should be eliminated from the minimization process.
This is the starting line for the Enhanced Standard Analysis, an extension
of the standard analysis by further eliminating the untenable assumptions
from the entire minimization process. Not only to create intermediate solu-
tions, but more importantly remove the untenable assumptions from the most
parsimonious solution(s) as well.

182 8 The Logical Minimization

But Schneider and Wagemann (2013) didn’t stop here and went even fur-
ther than ESA, formulating what is now known as TESA—Theory-Driven
Enhanced Standard Analysis, that expands the inclusion of remainders by
formulating the so-called conjunctural directional expectations.
The difference from the simple directional expectations is the formulation of
these expectations not only for atomic conditions, but for entire conjunctions
of conditions. Something like: we expect a fire to appear when there is both
air AND a sparkle AND inflammable materials around: (A·S·I ⇒ F)
There is still a need to prove the usefulness of using conjunctural directional
expectations, since a similar result can be obtained by formulating atomic
directional expectations, not necessarily in conjunction:
• we expect a fire when there is air (A ⇒ F)
• we expect a fire when there is a sparkle (S ⇒ F)
• we expect a fire when there are inflammable materials around (I ⇒ F)
The example provided by Schneider and Wagemann, that is going to be repli-
cated in the next section, suffers from the same benign (but still an) error to
explain these remainders and change the PI chart in the process. Contrary to
their findings the actual solution is equal to the conservative one, therefore in
the absence of a more concrete example it is unclear what TESA brings more
to the table.
On the other hand, ESA is a welcomed addition to the methodological QCA
field and I fully agree with its creators that implausible counterfactuals (es-
pecially those which contain the negation of a necessary condition) should be
removed from the minimization process.
Finally, this section should not be finished without discussing yet another
type of truth table rows that can be excluded from the minimization. It is not
about remainders, but about the empirically observed configurations and do
not belong to the counterfactual analysis. The property on which we might
eliminate observed rows is called simultaneous subset relations.
Some of these observed configurations might pass the sufficiency threshold for
both the presence and for the absence of the outcome, which renders them
incoherent. Although empirically observed, one possible decision is to remove
them too from the minimization. This will of course change the final solution,
but at least it would be based on firmly and coherently consistent observed
configurations.
There are also the true logical contradictory cases (Schneider and Wagemann
2012, p. 127), that have an inclusion in the configuration higher than 0.5, but
a lower (than 0.5) inclusion in the outcome. More recently, Schneider and
Rohlfing (2013, p. 585) prefer to call these deviant cases consistency in kind,
so the QCA terminology is not only expanding but is also overlapping. A bit
confusing, but hopefully this section will have made some helpful clarifications.

8.7 Intermediate Solutions: SA and ESA 183

8.7 Intermediate Solutions: SA and ESA

No less than three arguments are available when referring to the remainders:
include, exclude and dir.exp. They should be self-explanatory, first specify-
ing what to include in the minimization, the second what to exclude from the
minimization, and the third specifying the directional expectations.
Assuming the reader didn’t go through all previous code examples where
multiple truth tables have been created, we will again use the fuzzy version of
the Lipset data. The very first step is to create and inspect the truth table:

data(LF)
ttLF <- truthTable(LF, "SURV", incl.cut = 0.8, show.cases = TRUE,

sort.by = "OUT, n")

The function minimize() allows, and there is a strong tendency to initiate a
direct minimization process using the dataset, bypassing the truth table, but
I would warmly recommend producing a truth table first.
The truth table looks like this:

ttLF

OUT: output value
n: number of cases in configuration

incl: sufficiency inclusion score
PRI: proportional reduction in inconsistency

DEV URB LIT IND STB OUT n incl PRI cases
32 1 1 1 1 1 1 4 0.904 0.886 BE,CZ,NL,UK
22 1 0 1 0 1 1 2 0.804 0.719 FI,IE
1 0 0 0 0 0 0 3 0.216 0.000 GR,PT,ES
2 0 0 0 0 1 0 2 0.278 0.000 IT,RO
5 0 0 1 0 0 0 2 0.521 0.113 HU,PL

24 1 0 1 1 1 0 2 0.709 0.634 FR,SE
6 0 0 1 0 1 0 1 0.529 0.228 EE

23 1 0 1 1 0 0 1 0.378 0.040 AU
31 1 1 1 1 0 0 1 0.445 0.050 DE

With 5 causal conditions, there are 32 rows in the truth table, out of which
2 positive output, 7 negative output configurations, and 23 remainders. The
truth table is sorted first by the values of the OUT column (in descending
order), then by the values of the frequency column n. The consistency scores
are unsorted, but this choice of structure emulates Schneider and Wagemann
(2013).
Note the row numbers are also changed, due to the sorting choices. But each
configuration, remainders included, has a unique row number and that is going
to prove very useful when deciding which to include and which to remove from
the minimization process.

184 8 The Logical Minimization

Before proceeding to the minimization, it is a good idea to check if there are
deviant cases consistency in kind, in the truth table, using the argument dcc:

truthTable(LF, "SURV", incl.cut = 0.8, show.cases = TRUE, dcc = TRUE,
sort.by = "OUT, n")

OUT: output value
n: number of cases in configuration

incl: sufficiency inclusion score
PRI: proportional reduction in inconsistency
DCC: deviant cases consistency

DEV URB LIT IND STB OUT n incl PRI DCC
32 1 1 1 1 1 1 4 0.904 0.886
22 1 0 1 0 1 1 2 0.804 0.719
1 0 0 0 0 0 0 3 0.216 0.000 GR,PT,ES
2 0 0 0 0 1 0 2 0.278 0.000 IT,RO
5 0 0 1 0 0 0 2 0.521 0.113 HU,PL

24 1 0 1 1 1 0 2 0.709 0.634
6 0 0 1 0 1 0 1 0.529 0.228 EE

23 1 0 1 1 0 0 1 0.378 0.040 AU
31 1 1 1 1 0 0 1 0.445 0.050 DE

The DCC cases are all associated with the negative output configurations,
which is good. As long as they are not associated with the positive output
configurations, everything seems to be alright.
The “pure” parsimonious solution is produced, as always, by specifying the
question mark ("?") in the include argument:

pLF <- minimize(ttLF, include = "?", details = TRUE, show.cases = TRUE)
pLF

n OUT = 1/0/C: 6/12/0
Total : 18

Number of multiple-covered cases: 0

M1: DEV*ind + URB*STB => SURV

inclS PRI covS covU cases

1 DEV*ind 0.815 0.721 0.284 0.194 FI,IE
2 URB*STB 0.874 0.845 0.520 0.430 BE,CZ,NL,UK

M1 0.850 0.819 0.714

For this solution, the assumption is that all remainders contribute equally
to parsimony, despite the fact that not all of them have been used by the
minimization algorithm. The simplifying assumptions (the set of remainders
actually contributing to the minimization process), can be seen by inspected
the component SA from the newly created object:

8.7 Intermediate Solutions: SA and ESA 185

pLF$SA

$M1
DEV URB LIT IND STB

10 0 1 0 0 1
12 0 1 0 1 1
14 0 1 1 0 1
16 0 1 1 1 1
17 1 0 0 0 0
18 1 0 0 0 1
21 1 0 1 0 0
25 1 1 0 0 0
26 1 1 0 0 1
28 1 1 0 1 1
29 1 1 1 0 0
30 1 1 1 0 1

Out of the 23 remainders, only 12 have been used and the rest did not con-
tribute at all to the minimization. These SAs might contain both easy and
difficult counterfactuals, as it will be seen later. For the moment, the cur-
rently recommended procedure is to continue preparing for the intermediate
solution, by verifying the existence of contradictory simplifying assumptions.
This can be done in two ways, the first and most intuitive being to produce
another minimization on a truth table for the negation of the output (using the
same inclusion cut-off) assigned to an object pLFn, and check its simplifying
assumptions component:

ttLFn <- truthTable(LF, outcome = "~SURV", incl.cut = 0.8)
pLFn <- minimize(ttLFn, include = "?")
pLFn$SA

$M1
DEV URB LIT IND STB

3 0 0 0 1 0
4 0 0 0 1 1
7 0 0 1 1 0
8 0 0 1 1 1
9 0 1 0 0 0
10 0 1 0 0 1
11 0 1 0 1 0
12 0 1 0 1 1
13 0 1 1 0 0
14 0 1 1 0 1
15 0 1 1 1 0
16 0 1 1 1 1
17 1 0 0 0 0
19 1 0 0 1 0
21 1 0 1 0 0
25 1 1 0 0 0
27 1 1 0 1 0
29 1 1 1 0 0

186 8 The Logical Minimization

Since some of the rows are present in both matrices, it is a proof there are
indeed contradictory simplifying assumptions. To identify exactly which ones
are found in both:

intersect(rownames(pLFSAM1), rownames(pLFnSAM1))

[1] "10" "12" "14" "16" "17" "21" "25" "29"

According to Enhanced Standard Analysis, these CSAs should be avoided and
not included in the minimization process. This identification method works
when there is only one solution for both the presence and the absence of
the outcome. If multiple solutions exist, the component SA will contain the
simplifying assumptions for each solution, some obviously being duplicated
since they contribute to more than one solution.
A second and more straightforward way to check for contradictory simplifying
assumptions is to use the built-in function findRows() which takes care of all
these details. The input for this function is either one of the two truth tables,
usually the one for the presence of the outcome:

findRows(obj = ttLF, type = 2)

[1] 10 12 14 16 17 21 25 29

The conclusion is the same, this function being more integrated and saving
users from having to type additional commands. The purpose of finding these
CSAs is going to be introduced later, for the time being a next step in the
Standard Analysis is to specify directional expectations, for the purpose of
constructing intermediate solutions.
For the sake of simplicity, we will be assuming it is the presence of the causal
conditions that lead to the survival of democracy (the presence of the out-
come). These expectations are specified using the argument dir.exp:

iLF <- minimize(ttLF, include = "?", dir.exp = "1,1,1,1,1")

This argument can be specified either as a normal vector like dir.exp
= c(1,1,1,1,1) or between the double quotes, values being separated by com-
mas. The latter is recommended, due to the structure of directional expecta-
tions: they can take one of the values in the causal conditions, or a dash “-”
if there are no particular expectations for a specific causal condition.
Using a regular vector, the temptation is many times to write c(1,1,-,1,1)
which returns an error, the correct form being c(1,1,"-",1,1). Specifying
an equivalent vector within double quotes, such as "1,1,-,1,1", safeguards
against this possibility.
For multi-value sets, directional expectations can take multiple values. The
Lipset data has a multi-value version, where the first causal condition has
three values. For an assumption that both values 1 and 2 lead to the pres-
ence of the outcome, the directional expectations would be specified as

8.7 Intermediate Solutions: SA and ESA 187

"1;2,1,1,1,1" (note the separation of the multiple values using a semicolon)
(Fig. 8.10).

Search solutions by:

DEV
URB
LIT
IND
STB
SURV

ttLC
Dataset TT Outcome: Conditions:

DEV
URB
LIT
IND
STB

SURV

Run

Include

Exclude

? C

Assign to:

Directional exps:

ttLF B
DEV

IND
STB

DEV
URB
LIT
IND
STB
SURV SURVRR

B
DEV

IND
STB

show cases

use letters

negate outcome

1
1
1
1
1

iLF

consistency

coverage 1

0

PI consistencyuse tilde

row dominance

maximal solutions

show details

0PI depthSolution depth 0

cut-off:

1frequency

inclusion 1

inclusion 0

0.8

0

Quine-McCluskey minimization

Fig. 8.10 Specifying directional expectations (lower left) in the minimization dialog

In the graphical user interface, the directional expectations become available
as soon as the button ? is activated, for each causal condition selected when
the truth table was produced. Back to the intermediate solution, it is:

iLF

From C1P1:

M1: DEV*URB*LIT*STB + DEV*LIT*ind*STB => SURV

This is a subset of the most parsimonious solution, and a superset of the
conservative solution. The term DEV·URB·LIT·STB is a subset of URB·STB,
and DEV·LIT·ind·STB is a subset of DEV·ind. And they are both supersets
of the conservative solution:

minimize(ttLF)

M1: DEV*URB*LIT*IND*STB + DEV*urb*LIT*ind*STB => SURV

188 8 The Logical Minimization

To print the parameters of fit the argument details = TRUE should be specified,
or since the object has a dedicated printing function a command such as
print(iLF, details = TRUE) is also possible.
The intermediate solution is always in the middle between the conservative
and the parsimonious solutions, both in terms of complexity (it is less complex
than the conservative solution, but more complex compared to the parsimo-
nious one) and also in terms of set relations.
Ragin and Sonnett (2005) explain in detail how to derive these intermediate
solutions, based on the comparison between the complex and the parsimonious
solutions. Their procedure is implemented in the package QCA using the
prime implicants’ matrices from both solutions, combining them according to
the directional expectations to filter those which are ultimately responsible
with the intermediate solutions.
The reason for which the intermediate solution is halfway between the con-
servative and the parsimonious ones is due to the fact that less remainders
end up being used in the minimization process, as a result of filtering out
by directional expectations. Those which did contribute to producing the in-
termediate solution are the easy counterfactuals, the others are the difficult
counterfactuals.
The resulting object from the minimization function is a list with many com-
ponents. The one referring to the intermediate solutions is called i.sol:

names(iLF)

[1] "tt" "options" "negatives" "initials" "PIchart"
[6] "primes" "solution" "essential" "inputcases" "pims"

[11] "IC" "numbers" "SA" "i.sol" "call"

The i.sol component is also a list with multiple possible subcomponents:

names(iLF$i.sol)

[1] "C1P1"

In this example, it contains only one subcomponent, the pair of the (first)
conservative and the (first) parsimonious solutions. Sometimes it happens
to produce multiple conservative and also multiple parsimonious solutions, a
situation when there will be more subcomponents: C1P2, C2P1, C2P2 etc.
For each pair of conservative and parsimonious solutions, one or more interme-
diate solutions are produced within the corresponding subcomponent, which
is yet another object itself containing the following sub-sub-components:

names(iLF$i.sol$C1P1)

[1] "EC" "DC" "NSEC" "PIchart" "c.sol"
[6] "p.sol" "solution" "essential" "primes" "IC"

[11] "pims"

8.7 Intermediate Solutions: SA and ESA 189

This is where all the relevant information is located: the conservative solution
c.sol, the parsimonious solution p.sol, a dedicated PI chart in the subcom-
ponent PIchart as well as what we are interested most, to see which of the
simplifying assumptions are easy (EC) and which are difficult (DC).

iLF$i.sol$C1P1$EC

DEV URB LIT IND STB
30 1 1 1 0 1

iLF$i.sol$C1P1$DC

DEV URB LIT IND STB
10 0 1 0 0 1
12 0 1 0 1 1
14 0 1 1 0 1
16 0 1 1 1 1
17 1 0 0 0 0
18 1 0 0 0 1
21 1 0 1 0 0
25 1 1 0 0 0
26 1 1 0 0 1
28 1 1 0 1 1
29 1 1 1 0 0

Out of the 12 simplifying assumptions, only one was consistent with the speci-
fied directional expectations (the easy counterfactual on row number 30), the
rest of them have been filtered out, being identified as difficult.
This is as far as the Standard Analysis goes, with respect to the intermediate
solutions, it is only a matter of specifying directional expectations. From here
on, it is all about the Enhanced Standard Analysis which states that many of
the remainders (sometimes including some of the easy counterfactuals from
the intermediate solution) are incoherent, implausible, some even impossible,
hence any assumption using such remainders is untenable.
Applying directional expectations performs a similar operation of filtering out
some of the remainders (the difficult counterfactuals) so the process is some-
what similar. But filtering based on directional expectations is a mechanical
procedure that cannot possibly identify incoherent counterfactuals.
Whatever is called “incoherent” makes sense only from a human interpreted
perspective, for example it is impossible for an algorithm to detect an im-
possible counterfactual such as the “pregnant man”, unless it is an artificial
intelligence (but we are not there just yet).
Identifying untenable assumptions is therefore a human activity, and it is
a task for the researcher to tell the minimization algorithm not to use those
remainders identified as untenable. Excluding this kind of remainders from the
minimization process ensures a set of solutions that are not only minimally
complex, but also logically and theoretically coherent.

190 8 The Logical Minimization

What is about to be described next is highly important: given that some of the
remainders (the untenable ones) have been removed from the minimization,
it is obvious the minimal solution will not be as parsimonious as the “most
parsimonious” solution including all possible remainders. It will be a bit more
complex, but still less complex than the conservative one.
It is called the enhanced parsimonious solution (EPS) to differentiate it from
the “most” parsimonious solution which is almost always useless, being derived
using not only difficult counterfactuals but also untenable assumptions.
Sometimes, the enhanced parsimonious solution can be identical with the
intermediate solution, a reason for which many users confuse the two. But
this is a special situation, when directional expectations filter out untenable
remainders as well as the difficult counterfactuals. However this is not always
guaranteed, therefore the two should not be confused.
The result of the minimization process excluding the untenable assumptions
is the enhanced parsimonious solution, which can subsequently be used to
derive yet another intermediate solution (this time based on ESA), called the
enhanced intermediate solution (EIS).
It goes without saying that all other remainders that are tenable are included
in the minimization to obtain the EPS, otherwise it really does not matter
how many remainders are excluded, the result will always be a superset of the
conservative solution.
Some examples are going to be illustrative. For example, some contradic-
tory simplifying assumptions have been identified earlier, using the function
findRows(). Since these are incoherent counterfactuals, they should be ex-
cluded from the minimization process.

CSA <- findRows(obj = ttLF, type = 2)
minimize(ttLF, include = "?", exclude = CSA)

M1: DEV*URB*STB + DEV*ind*STB => SURV

This is the EPS, the “most” parsimonious solution that could be obtained
given the available remainders after excluding the CSAs. And the argument
which makes it possible is exclude, the third one referring to the remainders,
after having introduced include and dir.exp.
This solution is also a superset of the conservative solution. In fact, all other
solutions are supersets of the conservative one, or the other way round the
conservative solution is a subset of all other possible solutions. But at the same
time, this EPS it is a superset of all possible EISs enhanced intermediate
solutions based on the remaining easy counterfactuals, after excluding the
CSAs. The complexity rule is also valid, starting from the conservative solution
all the way down to the EPS.

8.7 Intermediate Solutions: SA and ESA 191

Applying directional expectations leads to the EIS, which is identical to the
normal intermediate solution:

eiLF <- minimize(ttLF, include = "?", exclude = CSA, dir.exp = "1,1,1,1,1")
eiLF

From C1P1:

M1: DEV*URB*LIT*STB + DEV*LIT*ind*STB => SURV

It is the same intermediate solution because it uses the same easy counterfac-
tual:

eiLF$i.sol$C1P1$EC

DEV URB LIT IND STB
30 1 1 1 0 1

The procedure is the same, regardless of the identified untenable assumptions.
They are simply served to the minimize() function via the argument exclude,
and the result is one EPS or another, depending which untenable assumptions
have been excluded.
For example, some other types of untenable assumptions are related to the
negated necessary conditions. At the analysis of necessity in Chap. 5, the
following necessary conditions have been identified:

superSubset(LF, outcome = "SURV", incl.cut = 0.9, ron.cut = 0.6)

inclN RoN covN

1 STB 0.920 0.680 0.707
2 LIT*STB 0.915 0.800 0.793
3 DEV+URB+IND 0.903 0.704 0.716

This replicates the example presented by Schneider and Wagemann (2013),
just using different column names. They have identified LIT (literacy) and
STB (government stability) as necessary conditions. Here, only STB is neces-
sary because LIT has a lower relevance, but it does not matter because the
conjunction LIT·STB is necessary and that implies by default the atomic con-
ditions are necessary: if the outcome is a subset of an intersection, it surely is
a subset of the entire set.
What Schneider and Wagemann (2013) argue has been covered in the previ-
ous section, graphically illustrated in Fig. 8.9: when a condition is identified as
necessary for the outcome, it is logically impossible for its negation to be suffi-
cient for the outcome. In this case, the conjunction LIT·STB is necessary and
its negation is ∼LIT + ∼STB, which means that any remainder containing
the negation of LIT or the negation of STB is incoherent.

192 8 The Logical Minimization

Truth table:
Select All

Contradictory simplifying assumptions

Simultaneous subset relations

∼LIT + ∼STB + ∼DEV*∼URB*∼IND

Assign to: INCOH Run

Find incoherent configurations

ttLC
ttLF remainders onlyExpression subsets:

Fig. 8.11 The GUI dialog to find incoherent configurations

All these incoherent counterfactuals can be identified using the function
findRows(), which has a dedicated dialog in the graphical user interface (in
Fig. 8.11 above), that is opened by selecting the menu:

Analyse/Incoherent Configurations
It uses the default type = 1 to identify the expression subset remainders:

INCOH <- findRows("~LIT + ~STB + ~DEV*~URB*~IND", ttLF)
minimize(ttLF, include = "?", exclude = INCOH)

M1: URB*LIT*STB + DEV*LIT*ind*STB => SURV

This is the same solution presented by Schneider and Wagemann, and irrespec-
tive of what further directional expectations would be defined, the enhanced
intermediate solution is the same because the incoherent counterfactuals have
already been excluded from the minimization.
These two examples demonstrate how to use the argument exclude in order
to perform the ESA—Enhanced Standard Analysis. How exactly this is made
possible, will be presented in the next section but it is hopefully clear by now
that ESA is possible by excluding any number of untenable assumptions via
the argument exclude: all truth table rows that do not seem logical, coher-
ent or tenable can be excluded to obtain a parsimonious or an intermediate
solution free of such assumptions.
In the graphical user interface, specifying the exclusion vector is trivially done
by typing the name of the object containing the row numbers (Fig. 8.12).

Include

Exclude

? C

INCOH

Fig. 8.12 Specifying the excluded configurations in the minimization dialog

8.7 Intermediate Solutions: SA and ESA 193

One final type of incoherent configurations that is worth presenting refers to
the simultaneous subset relations. Just like in the case of remainders, the func-
tion findRows() can be used to identify this category of rows in the truth table.
This time, however, it is not about the remainders but about the empirically
observed configurations.
Sometimes, it may happen that an such an observed configuration to have a
consistency score above the threshold for both the presence and the absence
of the outcome. Such a configuration is simultaneously a subset of both the
presence and of the absence of the outcome, this is quite possible in fuzzy
sets.

findRows(obj = ttLF, type = 3)

numeric(0)

For this particular dataset, there are no such simultaneous subset relations (of
type = 3 in the command above). Similar to the untenable assumptions, where
some remainders are excluded from the minimization, the same is possible
about observed configurations running the minimization process excluding
the simultaneous subset relations. The function minimize() doesn’t care if
it is an observed configuration or a remainder, everything supplied via the
argument exclude is equally excluded.
Before ending this section, the argument type has an additional possible value
equal to 0, that means finding all types of incoherent or untenable configura-
tions, provided an expression for type 1:

ALL <- findRows("~LIT + ~STB", ttLF, type = 0)
minimize(ttLF, include = "?", exclude = ALL)

M1: DEV*URB*LIT*STB + DEV*LIT*ind*STB => SURV

The solution above is the enhanced parsimonious solution excluding all those
untenable configurations. Interestingly, it is the same as the enhanced inter-
mediate solution after excluding the contradictory simplifying assumptions
and using directional expectations, so one way or another the solutions seem
to converge.
Any other untenable assumptions that researchers might find via other meth-
ods not part of the function findRows() can be added to the numeric vector
supplied via the argument exclude, using the usual function c(). The final en-
hanced parsimonious and intermediate solutions are then going to be derived
using what is left from the remainders.

194 8 The Logical Minimization

8.8 Theory Evaluation

Theory evaluation is vaguely similar to what the quantitative research calls
hypothesis testing: having empirical data available, it is possible to test a
certain hypothesized relation between (say) an independent and a dependent
variable, or more often between a control and an experimental group.
QCA is also focused on the empirical part, although much less on the actual
(raw) data but rather on the solutions obtained via the minimization process.
Using Boolean logic, Ragin (1987, p. 118) showed how to create an intersection
between a minimization solution and a theoretical statement (expectation)
about how an outcome is produced, and Schneider and Wagemann (2012)
extended this approach using consistency and coverage scores.
In theQCA package, there are two main functions which can be used to create
such intersections, both being able to natively involve various negations: the
first function is called intersection(), that works exclusively on the sum of
products type of expressions (including those from the minimization objects)
and the second one is called modelFit() which relies on a heavier use of the
minimization objects to also calculate parameters of fit.
It is perhaps important to mark the difference and not confuse the function
intersection() with the base R function called intersect() which performs
set intersection but has nothing to do with QCA.
As a first example, it is possible to re-use some of the objects created in the
previous section, but to make these examples self-contained they are going to
be re-created here:

data(LF)
ttLF <- truthTable(LF, outcome = "SURV", incl.cut = 0.8)
iLF <- minimize(ttLF, include = "?", dir.exp = "1,1,1,1,1")
iLF

From C1P1:

M1: DEV*URB*LIT*STB + DEV*LIT*ind*STB => SURV

Now, suppose that we have a strong theoretical expectation that democracy
survives where a country is both developed and has a stable government. Such
a hypothesis can be written in the expression: DEV·STB.
Using the function intersection(), we can see how is this expectation covered
by the empirical minimization solution:

intersection(iLF, "DEV*STB")

E1-C1P1-1: (DEV*URB*LIT*STB + DEV*LIT*ind*STB)*DEV*STB
I1-C1P1-1: DEV*URB*LIT*STB + DEV*LIT*ind*STB

8.8 Theory Evaluation 195

In this intersection, it could be argued the intermediate solution perfectly
overlaps our theory, since the conjunction DEV·STB is found in both solution
terms from the model.
In a similar fashion, and also very interesting is to see how the empirical
solutions overlap with the negation of the theory, or even how both negations
intersect:

intersection(negate(iLF), negate("DEV*STB"))

E1: (dev + lit + stb + urb*IND)(dev + stb)
I1: dev + stb

Note how both arguments that form the input for the function intersection()
can be natively and intuitively negated, the function negate() detecting auto-
matically when the input is a character expression or a minimization object.
The intersection of both negated inputs seems like an even more perfect match
with the (negated) theoretical expectation. And things can be made even
better, not only by automatically calculating all possible intersections between
expressions and/or their negations, but also including parameters of fit:

modelFit(model = iLF, theory = "DEV*STB")

M-C1P1
MODEL: DEV*URB*LIT*STB + DEV*LIT*ind*STB
THEORY: DEV*STB
MODEL*THEORY: DEV*URB*LIT*STB + DEV*LIT*ind*STB
MODEL*theory: -
model*THEORY: DEV*lit*STB + DEV*urb*IND*STB
model*theory: dev + stb

inclS PRI covS

1 DEV*URB*LIT*STB 0.901 0.879 0.468
2 DEV*LIT*ind*STB 0.814 0.721 0.282
3 MODEL 0.866 0.839 0.660
4 THEORY 0.869 0.848 0.824
5 MODEL*THEORY 0.866 0.839 0.660
6 MODEL*theory - - -
7 model*THEORY 0.713 0.634 0.242
8 model*theory 0.253 0.091 0.295

Just as in the case of QCA solutions, where multiple sufficient paths can be
found (each having potentially multiple disjunctive solution terms), there can
be alternative theories about a certain outcome. All of these theories can be
formulated disjunctively using the + operator, for example if another theory
about democracy survival states that industrialization alone ensures a survival
of democracy, these two theories can be formulated as DEV·STB + IND.

196 8 The Logical Minimization

modelFit(iLF, "DEV*STB + IND")

M-C1P1
MODEL: DEV*URB*LIT*STB + DEV*LIT*ind*STB
THEORY: DEV*STB + IND
MODEL*THEORY: DEV*URB*LIT*STB + DEV*LIT*ind*STB
MODEL*theory: -
model*THEORY: dev*IND + lit*IND + IND*stb + urb*IND + DEV*lit*STB
model*theory: dev*ind + ind*stb

inclS PRI covS

1 DEV*URB*LIT*STB 0.901 0.879 0.468
2 DEV*LIT*ind*STB 0.814 0.721 0.282
3 MODEL 0.866 0.839 0.660
4 THEORY 0.733 0.698 0.871
5 MODEL*THEORY 0.866 0.839 0.660
6 MODEL*theory - - -
7 model*THEORY 0.533 0.438 0.302
8 model*theory 0.272 0.070 0.251

The output of the modelFit() function is a list, having as many components
as the number of models in the minimization object. An artificial example to
generate two models could be:

iLF2 <- minimize(ttLF, include = "?", dir.exp = "1,0,0,0,0")
iLF2

From C1P1:

M1: DEV*URB*STB + (DEV*urb*ind) => SURV
M2: DEV*URB*STB + (DEV*ind*STB) => SURV

For each minimization model (solution), a model fit is generated:

mfLF2 <- modelFit(iLF2, "DEV*STB")
length(mfLF2)

[1] 2

Any of the contained solutions, for instance the second, can be accessed very
easily using the regular [[operator to index lists, such as:

mfLF2[[2]]

Chapter 9
Pseudo-Counterfactual Analysis

The word “assumption” has been used and overused, across all these sections
referring to the conservative, parsimonious and intermediate solutions of all
kinds. The time is ripe to discuss yet another assumption, perhaps the biggest
myth of all in terms of scope.
The information presented insofar, especially in the previous section to fil-
ter remainders and produce intermediate solutions, is based on the implicit
assumption that once the remainders are established, then classical Quine-
McCluskey algorithm steps in to find the prime implicants.
Let us discuss again the how the simplifying assumptions are understood: a
subset of the remainders which are actually used in the minimization process,
those that have an active role in producing the prime implicants. It is in line
with the philosophy of the QMC algorithm, that compares all possible pairs
of configurations (observed with a positive outcome plus the included remain-
ders), to identify those which differ through a single literal, and iteratively
minimize them until nothing can be minimized further.
Except for a very small number of developers, the vast majority of the QCA
users don’t have a very clear idea of how the programming of the QMC algo-
rithm really works, it is just a black box that outputs the expected results.
On the other hand, researchers do expect that remainders are actually used
in the minimization process. Much to everyone’s surprise, this is not how
prime implicants are produced in the current version of package QCA. The
final solutions are exactly the same, but they have almost nothing to do with
the remainders, be them good, tenable, untenable, easy, difficult, incoherent,
implausible and anything else.
It is easy to imagine this is an almost perplexing statement, that raises a
potential mistrust in the package (after all, it does not follow the classical,
exact algorithm put forward by Quine and McCluskey), or at the very least
raises two immediate questions:

© Springer International Publishing AG, part of Springer Nature 2019
A. Dus,a, QCA with R, https://doi.org/10.1007/978-3-319-75668-4_9

197

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-75668-4_9&domain=pdf
https://doi.org/10.1007/978-3-319-75668-4_9

198 9 Pseudo-Counterfactual Analysis

1. How does the package QCA finds the correct solutions, if no remainders
are actually used?

2. If the solutions are correct (and they are) what is then left of the entire
theoretical corpus around the remainders? Are all of these publications
sideways?

The short answer is: no. All publications around the remainders are valid, it
is only the procedure to derive all categories of remainders that is different.
While the current methodology focuses on what remainders are included in
the minimization (following the classical QMC algorithm), quite the opposite
the package QCA concentrates on the configurations that are excluded from
the minimization process.
The end result is exactly the same, much like a simple addition equation like
P +N +R = S, where parameters P and N are always known (the positive
and the negative output configurations). If P = 4 and N = 5, the equation
becomes 4+5+R= S. By filtering the remainders, suppose three of them are
identified so R = 3, then S can be calculated as 12. But the reverse is also
true: knowing the end result S = 12, we can derive R to be equal to 3.
This highly simplified example is only a conceptualization, of course, but it
is a very accurate description of what is happening in package QCA: it can
calculate the end result S based on the first two parameters P and N , and
reverse engineer the calculation of parameter R by using the result S.
From an algebraic point of view this seems like a magician activity pulling a
rabbit out of an empty hat, for the end result involving an unknown quantity
should be unknown. But using some very precise regularities of the minimiza-
tion process, this is already proven to be possible. Contrary to the common
perception, the remainders are never actually used in the minimization, they
are only derived after the solutions have been generated.

9.1 eQMC

How exactly this is possible was first described by Dus,a (2007), and later
formalized by Dus,a and Thiem (2015). The idea is very simple and has been
implemented in package QCA since version 0.6-5 back in 2007, after having
made these two absolute basic observations about the prime implicants:
1. they are always supersets of the initial positive output configurations
2. they are never supersets of the negative output configurations
The quest was to find all supersets of the positive output configurations, that
at the same time were not supersets of the negative output configurations,
and it was a simple matter of applying three functions:

9.1 eQMC 199

• findPrimes(), later renamed to findSupersets()
• a base function setdiff() to obtain the set difference with all elements in

the first set that were not present in the second, and
• a function to remove the redundant implicants, supersets that had supersets

of their own (meaning they were implicants but not prime implicants).
Finding all supersets of a given set of positive output configurations builds on
the previous findings from Dus,a (2010), where two other helpful ideas have
been introduced:
• using the implicant matrix, which for binary crisp sets it is the same as the

so-called 3k matrix where k is the number of causal conditions)
• instead of searching through all columns from the implicant matrix, it is

more simple to just use its row numbers so the information from an entire
matrix can be compressed in a single vector.

All these information might seem too abstract and unrelated to the Boolean
minimization process, but a simple example will reveal the underlying idea.
A hypothetical dataset (HD) will be used for both the classical QMC algorithm
and this new procedure. First, suppose we have empirical evidence for all
possible configurations of causal conditions (no limited diversity), amounting
to a (c)ompletely specified truth table:

HD <- cbind(createMatrix(rep(2, 4)), rep(c(1, 0), c(12, 4)))
colnames(HD) <- c(LETTERS[1:4], "Y")
ttHDc <- truthTable(HD, outcome = "Y")
ttHDc

OUT: output value
n: number of cases in configuration

incl: sufficiency inclusion score
PRI: proportional reduction in inconsistency

A B C D OUT n incl PRI
1 0 0 0 0 1 1 1.000 1.000
2 0 0 0 1 1 1 1.000 1.000
3 0 0 1 0 1 1 1.000 1.000
4 0 0 1 1 1 1 1.000 1.000
5 0 1 0 0 1 1 1.000 1.000
6 0 1 0 1 1 1 1.000 1.000
7 0 1 1 0 1 1 1.000 1.000
8 0 1 1 1 1 1 1.000 1.000
9 1 0 0 0 1 1 1.000 1.000

10 1 0 0 1 1 1 1.000 1.000
11 1 0 1 0 1 1 1.000 1.000
12 1 0 1 1 1 1 1.000 1.000
13 1 1 0 0 0 1 0.000 0.000
14 1 1 0 1 0 1 0.000 0.000
15 1 1 1 0 0 1 0.000 0.000
16 1 1 1 1 0 1 0.000 0.000

200 9 Pseudo-Counterfactual Analysis

This is not only a hypothetical truth table but also an unrealistic one with
12 out of the 16 possible configurations having a positive output and the rest
of 4 have a negative output. It is presented here for demonstration purposes
only but it nevertheless has a lot of potential to show how the QMC algorithm
really works.
The classical QMC minimization generates two prime implicants ∼A and ∼B:

pHD <- minimize(ttHDc, use.tilde = TRUE, method = "QMC")
rownames(pHD$PIchart)

[1] "~A" "~B"

In a real situation, it would be close to impossible to find empirical evidence for
all 16 possible configurations, and the truth table would display the observed
positive and negative configurations as well as the remainders which have a
question mark “?” in the OUTput column. Completely specifying the truth
table just simulates the process of including the remainders.
But suppose only the first four configurations have a positive output, leading
to an (i)ncompletely specified and more realistic truth table:

ttHDi <- truthTable(HD[-c(5:12),], outcome = "Y")
print(ttHDi, complete = TRUE)

OUT: output value
n: number of cases in configuration

incl: sufficiency inclusion score
PRI: proportional reduction in inconsistency

A B C D OUT n incl PRI
1 0 0 0 0 1 1 1.000 1.000
2 0 0 0 1 1 1 1.000 1.000
3 0 0 1 0 1 1 1.000 1.000
4 0 0 1 1 1 1 1.000 1.000
5 0 1 0 0 ? 0 - -
6 0 1 0 1 ? 0 - -
7 0 1 1 0 ? 0 - -
8 0 1 1 1 ? 0 - -
9 1 0 0 0 ? 0 - -

10 1 0 0 1 ? 0 - -
11 1 0 1 0 ? 0 - -
12 1 0 1 1 ? 0 - -
13 1 1 0 0 0 1 0.000 0.000
14 1 1 0 1 0 1 0.000 0.000
15 1 1 1 0 0 1 0.000 0.000
16 1 1 1 1 0 1 0.000 0.000

Minimizing this truth table (this time including the remainders) leads to the
same two prime implicants ∼A and ∼B:

9.1 eQMC 201

pHDi <- minimize(ttHDi, include = "?", use.tilde = TRUE, method = "QMC")
rownames(pHDi$PIchart)

[1] "~A" "~B"

The same prime implicants are obtained with the eQMC method, using the
findSupersets() function applied to the first four rows and the first four
columns from the HD data (same as the first four configurations from the
truth table) to yield the following superset row numbers from the 3k matrix:

posimp <- findSupersets(HD[1:4, 1:4] + 1, noflevels = rep(3, 4))
posimp

[1] 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 28 29 30 31 32
[23] 33 34 35 36 37 38 39 40 41 42 43 44 45

There are of course more than 16 rows from the truth table, because in this
example the implicants matrix has 34 = 81 rows. The 3k matrix is signaled
by using the vector rep(3, 4), where the number 3 literally implies 34, and
the configurations from ttHDc are raised in the implicants matrix by adding
1 to their values and use the value 2 for the presence and the value 1 for the
absence of a causal condition.
The function findSupersets() is next applied to the last four rows of the HD
matrix, to find all supersets of the negative output configurations:

negimp <- findSupersets(HD[13:16, 1:4] + 1, noflevels = rep(3, 4))
negimp

[1] 2 3 4 5 6 7 8 9 19 20 21 22 23 24 25 26 27 55 56 57 58 59
[23] 60 61 62 63 73 74 75 76 77 78 79 80 81

The next step is to find all supersets from the positive output configurations,
that are not supersets of the negative output configurations:

posimp <- setdiff(posimp, negimp)
posimp

[1] 10 11 12 13 14 15 16 17 18 28 29 30 31 32 33 34 35 36 37 38 39 40
[23] 41 42 43 44 45

These are all supersets of the positive output configurations, but most of
them are redundant because there are bigger supersets in this vector. The
final step of this procedure is to remove all redundant supersets, to obtain
the minimal non-redundant prime implicants. It involves two functions called
removeRedundants() and getRow() which are internal, not designed for the
user level (therefore undocumented) but it is easy to see what they do:

primeimp <- removeRedundants(posimp, noflevels = rep(3, 4))
primeimp

[1] 10 28

202 9 Pseudo-Counterfactual Analysis

These are the row numbers in the 3k matrix that are the equivalent of the
∼B and ∼A prime implicants, recalling that a value of 0 signals a minimized
condition, a value of 1 signals the absence of a condition and a value of 2
signals the presence of a condition:

getRow(primeimp, noflevels = rep(3, 4))

[,1] [,2] [,3] [,4]
[1,] 0 1 0 0
[2,] 1 0 0 0

The entire procedure is encapsulated in the eQMC minimization method:

epHDi <- minimize(ttHDi, include = "?", use.tilde = TRUE, method = "eQMC")
rownames(epHDi$PIchart)

[1] "~A" "~B"

The resulting prime implicants are exactly the same, despite using a very
different procedure which brought a great deal of speed compared with the
previous one, consuming a lot less memory (for 15 causal conditions, about
15 MB compared to 1.4 GB for the classical QMC). It also made it possible
to explore up to 18 conditions at once, therefore additional three conditions
meaning 33 = 27 times more complex situations than before.
Past that threshold, the eQMC algorithm reaches its maximum possibilities.
The culprit is less represented by memory consumption, although at an ex-
tremely high number of causal conditions the generated vectors of row num-
bers for the supersets can potentially grow larger than available memory. Pos-
sibly problematic, after 19 causal conditions the row numbers cannot even
be represented in 32 bit computers, which have an upper representation limit
of 231, that is still higher than 319 but not enough compared to 320 for the
implicant matrix with 20 causal conditions.
The more serious issue is the calculation time, especially at the final step to
remove the redundant implicants: for millions or tens of millions of implicants,
even this “quick” process can take a lot more time than expected.
As shown, the input of the classical QMC procedure consists of 12 positive
output configurations, either having a completely specified truth table or in-
cluding the 8 remainders that are treated the same as the empirically observed
positive output configurations. In the eQMC procedure, sifting through the
supersets of the 4 positive and 4 negative output configurations generates the
very same prime implicants, without even touching the “included” remainders.
One might argue this is not entirely accurate, because the remainders are
still somehow involved in this alternative procedure, among the redundant
superset implicants. This would be a valid counter argument, if not for a
third minimization method called “CCubes”, that finds the prime implicants
not by searching through supersets but using consistency cubes.

9.2 Consistency Cubes 203

9.2 Consistency Cubes

The hypothetical dataset in the previous section is highly straightforward,
both ∼A and ∼B showing perfect consistency with the presence of the out-
come. For the next procedure, suppose we have the following simulated truth
table with three positive and three negative output configurations:

tt <- matrix(c(1,0,0,0,1,1, 0,0,1,0,0,1,
1,0,0,1,1,1, 0,1,1,0,1,1,
1,1,1,0,0,0), nrow = 6)

dimnames(tt) <- list(c(11, 2, 6, 3, 12, 16), c("A", "B", "C", "D", "OUT"))
tt

A B C D OUT
11 1 0 1 0 1
2 0 0 0 1 1
6 0 1 0 1 1
3 0 0 1 0 0
12 1 0 1 1 0
16 1 1 1 1 0

Similar to the eQMC method, the input for this procedure does not involve
any remainders but only the positive and the negative output configurations.
The following definition is necessary to properly describe how consistency
cubes work:

Definition 9.1. A prime implicant is the simplest possible, non-redundant, fully
consistent superset of any positive output configuration.

In this definition, fully consistent means it is not a superset of an observed
negative output configuration. The simplest possible superset is a single con-
dition (either its presence, or its absence). Figure 9.1 below is a graphical
representation of the truth table tt, from which it can be observed that none
of the conditions is fully consistent in their presence. There is only one condi-
tion (C) that is fully consistent in its absence but it does not cover all observed
positive configurations and search is continued at the next level of complexity.

A B C D OUT

1

1

1

0

0

0

11

2

6

12

16

3

∼C

Fig. 9.1 Individual presence inconsistencies, absence of C consistent

204 9 Pseudo-Counterfactual Analysis

In the next level of complexity, superset expressions are searched in all combi-
nations of 2 conditions out of 4, and within each combination in all possible
pairs of their respective levels. In none are found at this level, search is contin-
ued in all combinations of 3 conditions out of 4, until everything is exhausted.
Since binary crisp conditions are just a subset of the general multi-value con-
ditions, a complete search space S containing all these possibilities can be
calculated as the sum of all combinations of c selected conditions out of k,
times the product of their respective number of levels ls for each such selected
combination:

SMV =
k∑

c=1

(
k

c

) c∏

s=1
ls (9.1)

The search space for the binary crisp sets (CS) involve just two levels (0 and
1) for each condition, and the equation above results in exactly 3k −1 possi-
ble expressions, describing what Ragin (2000, pp. 132–136) calls “groupings”.
These are all possible configurations from the 3k implicant matrix specific for
binary crisp sets:

SCS =
k∑

c=1

(
k

c

) c∏

s=1
2 =

k∑

c=1

(
k

c

)
2c = 3k −1 (9.2)

Using a similar technique, Ragin lists all possible expressions combining pres-
ence and absence of causal conditions in Table 5.4 (p. 134). His search tech-
nique is very similar to this bottom-up approach (starting from the simplest
expressions), using what he calls the “containment rule” to eliminate more
complex, redundant expressions.
The efficiency of the bottom-up approach (from simplest to the most complex
expressions) can be measured by the performance of the CCubes algorithm,
that combines the properties of Eq. (9.1) with the requirements of Defini-
tion 9.1. These are all key ingredients that make the CCubes algorithm very
fast.
At the next level of complexity c = 2, Fig. 9.2 displays all possible combinations
of presence and absence for the conditions A and D, out of which two pairs are
consistent: ∼A·D and A·∼D are simultaneously associated with an observed
positive output (above the separator), while at the same time not associated
with an observed negative output (below the separator).
Both sides of the cube have to be lit below the separator in order to prove
inconsistency (such as those from fourth implicant A·D), otherwise in the
absence of complete negative cubes they are consistent with the positive ones.

9.2 Consistency Cubes 205

A.D∼A.∼D ∼A.D A.∼D OUT

1

1

1

0

0

0

11

12

6

3

12

16

Fig. 9.2 Conjunctive prime implicants

9.2.1 Search Space

Exploring the entire search space is a polynomial, time consuming operation.
To make sure the results are exhaustive, all possible combinations of conditions
must be verified, along with all their combinations of levels. There are 4 pairs
of such combinations of levels in Fig. 9.2, but there are 6 combinations of 4
conditions with 4 pairs of levels each, consuming 48 computer cycles (six times
four times two comparisons).
To solve this exponential computational problem, the search space is parti-
tioned into layers of complexity, starting with the least complex (c = 1) to a
maximum value of k causal conditions. A second strategy to eliminate redun-
dant search becomes evident by noticing that not all combinations of levels
should be checked, as the relevant ones are already found in the truth table
configurations, thus solving yet another usual problem (memory consumption)
in such polynomial search strategies.
In Fig. 9.2 there are four combinations for the levels (presence and absence)
of the two conditions A and D, but only two of them are relevant and they
are already found in the observed configurations (the other two combinations
of levels will certainly prove to be void, as they are not observed).

tt[, c("A", "D", "OUT")]

A D OUT
11 1 0 1
2 0 1 1
6 0 1 1
3 0 0 0
12 1 1 0
16 1 1 0

By eliminating certain void search, the search space is shortened to only 6
rows times two columns (12 computer cycles instead of 48). The identified
prime implicants are the conjunctions A·∼D is also the same as the binary

206 9 Pseudo-Counterfactual Analysis

combination “10” on the first line, truth table row number 11), and the con-
junction ∼A·D, same as the binary combination “01” on the next two lines,
truth table row numbers 2 and 6), as they are found in the observed positive
output configurations and not in the negative output ones.
A third strategy to shorten the search space is made possible by using the
mathematical regularities from the previous two implementations, in this ex-
ample transforming the binary representations of the truth table configura-
tions in their decimal equivalent:

data.frame(AD = tt[, c("A", "D")] %*% 2:1, OUT = tt[, "OUT"])

AD OUT
11 2 1
2 1 1
6 1 1
3 0 0
12 3 0
16 3 0

While the exhaustive approach consumed 48 cycles, the same results can be
obtained by searching through only these 6 decimal numbers: 2, 1, 1, 0, 3, 3
(the first three corresponding to the observed positive configurations where
OUT = 1). Since they are not found in the negative truth table configurations
(numbers 0, 3, 3), both are identified as prime implicants.
This bottom up approach is superior to the previous QMC and eQMC meth-
ods in terms of efficiency, and generates the same prime implicants:

ptt <- minimize(truthTable(tt, outcome = "OUT"),
include = "?", use.tilde = TRUE, method = "CCubes")

ptt$PIchart

2 6 11
~C x x -
~A*B - x -
~A*D x x -
A*~D - - x

All prime implicants from Figs. 9.1 and 9.2 are found: ∼C, ∼A·D and A·∼D.
The fourth one ∼A·B is actually redundant because it does not contribute to
solving the prime implicants chart (explaining all positive output configura-
tions).
This is the search strategy corresponding to the parsimonious solution, and
contrary to the common (mis)perception, the pseudo-counterfactual analysis
does not actually use any remainders to generate prime implicants and yet
the final solutions are the same as those from the classical QMC algorithm.
It may not seem highly relevant at this point, but it will prove important in
the next chapter.

9.3 Include vs. Exclude 207

9.3 Include vs. Exclude

Both Standard Analysis (SA) and the Enhanced Standard Analysis (ESA)
insist on which counterfactuals to be included in the minimization process,
together with the observed positive output configurations. By default, all
remainders are included, unless specifically filtering out some of them: in-
coherent counterfactuals, untenable assumptions, contradictory simplifying
assumptions etc.
The usual conceptualization of the minimization process follows the classi-
cal QMC procedure with a set of configurations composed from the positive
output ones plus what is left from the remainders after filtering out. In the
classical procedure, what is left out (the negative output configurations and
the filtered counterfactuals) do not play any role whatsoever in the minimiza-
tion process. Only what is preserved contribute to a minimal solution, where
the word “minimal” should be interpreted function of how many remainders
are left after filtering out some of them.
While QMC ignores what is left out, the current default algorithm in package
QCA does exactly the opposite: it ignores the “included” remainders and in-
stead concentrates on the contrast between the positive output configurations
(on one hand) and the set composed from the negative output configurations
plus what is filtered out from the remainders (on the other).
In the classical QMC algorithm, the remainders which are not filtered out
and survived this process are treated as if they had a positive output value,
based on the assumption that should these remainders ever be observed, they
would contribute to producing the phenomenon of interest. And this is a very
intuitive conceptual image of the minimization process, taking out of this
picture the remainders which are filtered out.
But the same results are obtained by ignoring the surviving remainders, and
instead concentrating on those which are filtered out. In this alternative pro-
cess a different assumption is made, that should these (filtered out) remain-
ders ever be observed, they would not lead to producing the phenomenon of
interest.
The counterfactual analysis assumes the surviving remainders would produce
the output, whereas the pseudo-counterfactual analysis assumes the filtered
out remainders would not produce the output, should they be empirically
observed. These are, of course, the two sides of the same coin: QMC focuses
on the included remainders, while eQMC and the faster CCubes concentrate
on the excluded remainders, with the same end result.
The reason for this alternative approach is speed and memory. The classical
QMC approach reaches its limits at about 11–12 input causal conditions (con-
suming a lot of memory in the process), while CCubes can easily deal with
up to 30 causal conditions with no additional memory needs.

208 9 Pseudo-Counterfactual Analysis

Building on the previous example with the simulated truth table, there are
6 observed configurations having the row numbers: 11, 2, 6, 3, 12, and 16.
Since there are four binary crisp conditions, the remainders are found on row
numbers:

setdiff(1:16, rownames(tt))

[1] 1 4 5 7 8 9 10 13 14 15

Suppose the remainders on rows numbers 7 and below should be excluded
from the minimization process, which means the classical QMC algorithm
would include the rest of the surviving remainders 8, 9, 10, 13, 14 and 15,
which are assumed to take a positive output value of 1.

toinclude <- c(8, 9, 10, 13, 14, 15)
tt2 <- rbind(tt, cbind(getRow(toinclude, noflevels = rep(2, 4)), 1))
rownames(tt2) <- c(rownames(tt), toinclude)

Using a cascading combination of functions rbind(), cbind() and getRow(),
the code above simulates the data becoming the input for the classical QMC
algorithm. It is very important to understand this is a simulated truth table,
because in a normal one the column OUT would be coded with a question
mark sign "?" for the included remainders, not a value of 1 as here.

minimize(truthTable(tt2, outcome = "OUT"),
use.tilde = TRUE, method = "QMC")$PIchart

2 6 8 9 10 11 13 14 15
A*~C - - - x x - x x -
A*~D - - - x - x x - x
~C*D x x - - x - - x -
~A*B*D - x x - - - - - -

The net effect of hardcoding the output value with 1 (instead of "?") for the
remainders is the generation of a larger PI chart, where the correct one would
only display columns “2”, “6” and “11” (the observed positive configurations).
It can be seen that only the prime implicants A·∼D and ∼C·D cover these
three columns, and the other two PI lines do not count in the solution.
Manual hardcoding of the output column is not a very good idea,
this is the morale that captures the essence of this example.
The correct PI chart is obtained by using the initial truth table tt, specifically
excluding the hypothetical untenable remainders 1, 4, 5, 7:

minimize(truthTable(tt, outcome = "OUT"), exclude = c(1, 4, 5, 7),
include = "?", use.tilde = TRUE, method = "CCubes")$PIchart

2 6 11
A*~D - - x
~C*D x x -
~A*B*D - x -

Chapter 10
QCA Extensions

10.1 Temporal QCA

Ever since the QCA method has been developed, it has been a promising
methodological candidate to study complex phenomena. The empirical data is
subjected to a theoretical model which consists of a series of causal conditions
and one outcome, which could partially explain why it is sometimes confused
with a regression model.
While regressions share a similar, simple diagram (independent variables hav-
ing a direct effect over the dependent variable), in reality the phenomena being
studied have a much more complex structure. Some causal factors naturally
happen before others, thus determining (directly or indirectly) their structure
and their possible effects on the final outcome.
The temporality aspect of QCA has been extensively discussed before
(De Meur et al. 2009; Schneider and Wagemann 2012; Hak et al. 2013;
Marx et al. 2014), but few of the identified solutions have been converted into
concrete research instruments to be combined with the current QCA software.
While many of these solutions are tempting to discuss, this section will cover
only a smaller subset which can be used in conjunction with R and wherever
possible with the package QCA.
Caren and Panofsky (2005) wanted to tackle this important aspect of the
social research and propose a new methodology called TQCA (an extension
of the main QCA with a temporal dimension). As they eloquently put it:

Variables and cases, as Ragin deploys them in QCA, are frozen in time—they are
treated neither as containing sequences of events nor as forces that cause changes
to occur over time.

Much like in the clarifying response from Ragin and Strand (2008), I have
the same opinion that such an attention to the dimension of time is highly

© Springer International Publishing AG, part of Springer Nature 2019
A. Dus,a, QCA with R, https://doi.org/10.1007/978-3-319-75668-4_10

209

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-75668-4_10&domain=pdf
https://doi.org/10.1007/978-3-319-75668-4_10

210 10 QCA Extensions

welcomed in the methodological field. Since these two papers have appeared,
the concept of temporality has been a recurrent theme in the literature, in
close connection with causality which is going to be treated in more depth in
the next section.
Although Caren and Panofsky proposed an extension of the QCA methodol-
ogy, actually modifying the minimization algorithm to incorporate this dimen-
sion, Ragin and Strand showed that it needs no special modification because
it was always possible to do that with the classical QCA. The solution was
pointed right back to the original book by Ragin (1987, p. 162):

Note that it is possible to include causal variables relevant to historical process
in a truth table (such as “class mobilization preceded ethnic mobilization,” true
or false?) and to analyze combinations of such dichotomies. This strategy would
enhance the usefulness of Boolean techniques as aids to comparative historical
interpretation.

The solution is therefore as simple as using just one additional column in
the data (called EBA) to account for the cases where the causal condition
E (support for elite allies) happens or not before the condition A (national
union affiliation). In this version of the data, conditions P and S are placed
first and last but don’t carry a temporal information.

data(RS)
RS

P E A EBA S REC
1 1 1 1 1 1 1
2 1 1 1 1 1 1
3 1 1 1 0 1 1
4 1 1 1 1 0 1
5 1 1 1 1 0 1
6 1 1 0 - 1 1
7 1 0 1 - 1 0
8 1 0 1 - 1 0
9 1 0 0 - 1 0
10 1 0 0 - 1 0
11 1 0 0 - 1 0
12 1 0 0 - 0 0
13 0 1 1 0 1 1
14 0 1 0 - 0 0
15 0 0 0 - 0 0
16 0 0 0 - 0 0
17 0 0 0 - 0 0

The dash is a special sign, departing from the regular binary values 0 and 1,
but it is recognized as such by package QCA. It is there to account for the
cases where it is impossible to assess if the condition E really happens before
the condition A, because one of them or even both are not happening.
For instance, the first case with a dash at condition EBA is on line 6, where
condition E is present (value 1) but condition A is absent (value 0, it does
not happen). It would be logically impossible to say that E happens before A
happens, given that A does not happen at all.

10.1 Temporal QCA 211

Even more obvious, on the last case where both E and A are absent, it would
not make sense to say that E happens before A, just as it would be illogical
to say that E doesn’t happen before A doesn’t happen. To gain any logical
interpretation, the expression E before A needs both E and A to actually
happen.
With this kind of data, it is possible to perform a regular Boolean minimization
and obtain the same results as those initially advanced by Caren and Panofsky,
and further simplified by Ragin and Strand:

minimize(truthTable(RS, outcome = "REC"))

M1: P*E*S + P*E*A*EBA + E*A*eba*S <=> REC

This result faithfully replicates those presented by Ragin and Strand, and
expression such as P*E*A*EBA indicating a causal order, with both E and A as
part of this prime implicant and the simultaneous information EBA, that is E
happens before A happens. The third expression E*A*eba*S is also sufficient
for the outcome REC (union recognition), but in this case the condition E
does not happen before condition A.
As simple as it may seem, this approach suffers from the main disadvantage
that it only works with a conservative solution type. It would be impossible to
select any meaningful counterfactuals, not only configurations of conditions
for which there is no empirical information, but also with an added uncertainty
related to the causal order of the counterfactuals.
Given this rather severe restriction, it is not surprising that an initially promis-
ing extension to incorporate the temporal dimension, was not further devel-
oped. There are now over 10 years since the article by Caren and Panofsky
appeared, and nothing else was further mentioned.
Another, under appreciated and almost forgotten paper was contributed by
Hino (2009). Building on the work of Caren and Panofsky, as well as Ragin and
Strand, he proposed a number of different other techniques to introduce the
temporal dimension, using various forms of time-series: Pooled QCA, Fixed
Effects QCA, and Time Differencing QCA. While in the previous TQCA tech-
nique, it was the sequence of events that leads to a specific outcome, Hino’s
approach (called TS/QCA) considers the changes of the events as causal fac-
tors that produce a certain outcome.
One major advantage of the TS/QCA is related to the number of causal con-
ditions, that remains equal to the one from the classical QCA (in the former
TQCA, additional columns are created for each pair of causal order between
two conditions). In TS/QCA, it is the number of dataset rows that is mul-
tiplying, as a function of the numbers of cases and the number of temporal
measurements: the same case can appear multiple times in the dataset, func-
tion of how many measurement points it has.

212 10 QCA Extensions

In the Time Difference method, only two measurements are of interest (the
start point, in Hino’s case 1980, and the end point, 1990) for each case. The
difference between them is then trivially transformed into binary crisp sets
using a value of 1 for a positive difference (the end point value is higher than
the starting point), and a value of 0 otherwise.

data(HC)
minimize(truthTable(HC, outcome = "VOTE"))

M1: FOREIGN*PRES80 + FOREIGN*UNEMP*CONV + UNEMP*CONV*PRES80 <=> VOTE

Including the counterfactuals, this becomes:

minimize(truthTable(HC, outcome = "VOTE"), include = "?")

M1: CONV + PRES80 <=> VOTE

Arguably, Hino’s method could perhaps be improved by employing fuzzy sets
when calibrating the difference between the start time and end time. Instead
of 1 for positive difference and 0 otherwise, one could imagine fuzzy scores to
take into account large differences, negative towards zero and positive towards
1, while very small differences would be close to the 0.5 crossover point. By
examining the full range of differences, dedicated calibrated thresholds could
be employed and allow the final calibrated conditions to have fuzzy, rather
than crisp values.
The Time Difference method is quite simple, and can be used without resort-
ing to any other specially designed algorithms, it works with a normal QCA
minimization process. And due to the recent theoretical developments, it can
also benefit the counterfactual analysis in the (Enhanced) Standard Analysis,
using directional expectations etc.
However, Berg-Schlosser (2012, p. 210) points that Hino’s method can be
applied with metric variables only, and in addition it does not detect particular
sequences of events, as the previous TQCA method did. I would personally
not worry too much about the metric issue as almost all causal conditions
(especially in fuzzy sets QCA) are measured on a metric scale, one way or
another.
The second issue is indeed something to be concerned about, and Berg-
Schlosser mentions a possible solution of defining the condition itself as a
causal sequence, and something very similar was mentioned by De Meur et al.
(2009, p. 162) to integrate the temporal dimension into the conditions them-
selves and create “dynamic” conditions.
For Ragin and Strand’s example, this would probably imply having the con-
dition EBA indicating with a value of 1 if E happens before A happens, and
0 otherwise (including the situations when E does not happen, or A does not
happen or both not happening).

10.1 Temporal QCA 213

However this approach still implies an additional information about the causal
order between two existing conditions, whereas a dynamic temporal condition
should contain the information itself. Obviously, a different condition ABE
would be needed to signal if A happens before E happens.
This approach has the big advantage of eliminating the “don’t care” code,
and the data becomes more standard, more simple to minimize, and the ice
on the cake it opens up the possibility to include remainders for temporal
QCA. With the two (binary crisp) conditions EBA and ABE, the conditions
A and E are now redundant, and the solution changes to:

RS2 <- RS
RS2$ABE <- recode(RS$EBA, "0 = 1; else = 0")
RS2$EBA <- recode(RS$EBA, "- = 0; else = copy")
minimize(RS2[, c(1, 4, 7, 5, 6)], outcome = "REC")

M1: P*EBA*abe + eba*ABE*S => REC

This result is perfectly equivalent to the one minimizing the original dataset
RS, without the conditions A and E:

minimize(RS[, -c(2, 3)], outcome = "REC")

M1: P*EBA + eba*S => REC

This solution is a bit different from the original one presented by Ragin and
Strand, but much of the essential is preserved. For instance, the expression
P*EBA is logically equivalent with the former P*E*A*EBA, and eba*S is also part
of the original solution. The expression P*E*S is no longer found, but it neither
entailed anything about the temporal order between E and A.
Temporal order of events is almost always associated with causal analysis,
therefore a full fledged temporal QCA methodology has to be intrinsically
related to causation. The paper by Mahoney et al. (2009) is a must read
for anyone wanting to understand both concepts, in terms of set relations.
They described a method called sequence elaboration, introducing all sorts of
relations between a cause and an effect: necessary, sufficient, both necessary
and sufficient, INUS and SUIN, combined with yet another battery of such
relations with an intervening cause (either antecedent or subsequent to the
main cause, etc.).
These are all very interesting, especially since they employ set theory which
is the bread and butter of the QCA analysis. The next section deals with
a methodology specifically tailored for causal analysis, similar yet somehow
different from QCA.

214 10 QCA Extensions

10.2 Coincidence Analysis: CNA

About two decades after the introduction of QCA by Ragin (1987), another
interesting methodological approach has been contributed by Baumgartner
(2009), based on his PhD thesis defended a couple or years earlier, and named
CNA—coincidence analysis.
While QCA analyses one outcome using various configurations of causal con-
ditions, CNA inspects all possible causal configurations not only with respect
to the outcome, but also among the causal conditions themselves. It is more
than a temporal QCA, although a causal context presumes that the cause
must happen before the effect.
The idea of analyzing possible relations between conditions is not new, having
been used for decades in SEM—Structural Equation Models. In fact, the newer
terminology in CNA (Baumgartner and Thiem 2017, online first) speaks of
exogenous and endogenous factors that are custom for SEM models. It is
the adaptation of causal models to QCA which is certainly interesting and
constitutes a possible advancement of the QCA methodology.
Although claiming to be different and even superior to QCA, as it will be
shown in this section, CNA is in fact a sub-variant of QCA as acknowledged
by its creator (Baumgartner 2013, p. 14):

. . . instead of CNA one might just as well speak of case analysis—or even of causal-
chain- QCA (ccQCA). . .

The terminology of CNA is a bit different: factors (and sometimes residuals)
instead of conditions, or effects instead of outcomes, or coincidence lists in-
stead of truth tables (although not identical), but the similarities are obvious.
At the time of its appearance, CNA was (and I believe it still is) a promising
QCA extension. More recently, Baumgartner and Thiem (2017, online first)
claim that QCA is actually incorrect when employing the conservative and
the intermediate solutions, a good enough reason for more thorough analysis
of the CNA methodology, both on its own and also comparing its capabilities
to those of its larger QCA sibling. As it will be shown, CNA has its merits
but for truth table type of analyses it is essentially a sub-variant of QCA.
There are all sorts of myths being vehiculated, that initiate a methodologi-
cal need for clarifications. For instance, the following initial affirmation from
Baumgartner (2009, p. 72) is interesting:

. . . QCA is designed to analyze causal structures featuring exactly one effect and
a possibly complex configuration of mutually independent direct causes of that
effect.

In addition, on page 78:
. . . Contrary to QCA, however, the data fed into CNA are not required to mark
one factor as the effect or outcome.

10.2 Coincidence Analysis: CNA 215

This is essentially stating that QCA as a technique cannot observe but a
single outcome at a time, while CNA is free to observe all possible relations
between all conditions, each one being considered an outcome. This is partially
true, the QCA algorithm being indeed restricted to a single outcome, but it
induces an image of a more limited QCA technique because of this apparent
limitation. In reality, there is nothing to prevent researchers running several
QCA analyses and vary the outcome among the conditions, to see which of
the conditions form causal structures.
The only difference is the possibility of performing the entire CNA procedure
in an automated fashion, but this is merely a software feature not a method-
ological limitation. In fact, as it will be shown later, the version 3 of QCA
package offers a similar automated procedure that can reproduce the results
from CNA. But it should be noticed that such an automated procedure is
mechanical and data driven, an important aspect that will be treated later in
more depth.
Another myth that is vehiculated, probably more important in scope because
it is supposed to show the alleged superiority of CNA, refers to the Quine-
McCluskey algorithm and the use of remainders. Baumgartner (2013, p. 14)
states that:

. . . contrary to QCA, CNA does not minimize relationships of sufficiency and neces-
sity by means of Quine-McCluskey optimization but based on its own custom-built
minimization procedure.

Also, from the abstract of Baumgartner (2015, p. 839):
. . . in order to maximize parsimony, QCA—due to its reliance on Quine-McCluskey
optimization (Q-M)—is often forced to introduce untenable simplifying assump-
tions. The paper ends by demonstrating that there is an alternative Boolean
method for causal data analysis, viz. Coincidence Analysis (CNA), that replaces
Q-M by a different optimization algorithm and, thereby, succeeds in consistently
maximizing parsimony without reliance on untenable assumptions.

All of these quotes imply that different from QCA, the “custom built” algo-
rithm behind CNA does not rely on any remainders, and thus emerges as
a reliable alternative to QMC, that is not “forced” to introduce untenable
simplifying assumptions.
The apparent reliance on the classical QMC optimization was already dis-
proven in Chap. 9: the modern QCA algorithms do not necessarily rely explic-
itly on remainders and more importantly do not necessarily rely on the clas-
sical QMC algorithm. Instead, package QCA employs (since 2007) a pseudo-
counterfactual analysis that produces exactly the same results as those from
the classical QMC approach.
This myth should not be left without a further clarification relating to the
second part, that CNA does not rely on any remainders in the process of max-
imizing parsimony. It is rather easy to compare the new QCA algorithms to
the one described by CNA. Baumgartner (2009, p. 86) provides the following

216 10 QCA Extensions

definition to find a coincidence (another terminological departure from the
established concept of a prime implicant):

SUF: A coincidence Xk of residuals is sufficient for Zi iff the input list C contains
at least one row featuring XkZi and no row featuring XkZ̄i.

This is, unsurprisingly, very similar to Definition 9.1 of a prime implicant (i.e. a
sufficient expression Xk for Zi) introduced when describing the Consistency
Cubes procedure:

A prime implicant is the simplest possible, non-redundant, fully consistent superset
of any positive positive output configuration.

To reiterate the explanation, fully consistent also means it can never be a
superset of an observed negative configuration (“no row featuring XkZ̄i”). It
has a full inclusion score equal to 1, in the set of supersets of the positive
output configurations, and conversely an inclusion score of 0 in the set of
supersets of the negative output configurations.
This is of course valid for exact Boolean minimization, for truth table based
analyses, but it is not out of the question, and also in the spirit of the fuzzy
sets, to sometimes lower this inclusion score such that if an expression has a
0.95 consistency for sufficiency (therefore not full but almost), it could still
be accepted as a prime implicant.
Chapter 9 demonstrates unequivocally that a pseudo-counterfactual analysis
produces exactly the same parsimonious solutions as the one produced via
the classical Quine-McCluskey procedure, as if it included the remainders.
Whether or not some methodologists agree, for truth table type of analyses
CNA behaves like a pseudo-counterfactual analysis therefore it is in fact im-
plicitly using the remainders.
If the CNA and QCA algorithms are indeed similar and equivalent, they
should reach exactly the same solutions. As indicated before, version 3 of
package QCA offers a function called causalChain(), that is going to be com-
pared with the function cna() from package cna version 2.0 (Ambuehl and
Baumgartner 2017).
The specification of the function causalChain() is very basic:

causalChain(data, ordering = NULL, strict = FALSE, ...)

The arguments ordering and strict are there to ensure similar functionality
with function cna(), while the three dots ... argument can be used to pass
various parameters to function minimize(), which is used in the background
by the wrapper function causalChain().
Two things are necessary to be explained. First, package cna is only fo-
cused on parsimonious solution types. If not otherwise specified, function
causalChain() silently sets the argument include = "?" to arrive at this type

10.2 Coincidence Analysis: CNA 217

of solution. Second and similar, there is another argument called all.sol in
function minimize() that allows (when activated) to find all possible solutions
for a given data, irrespective of how many conjunctions it contains.
To be compliant with the QCA standard, the default is to leave this argu-
ment inactive but since package cna explores the full solution space, function
causalChain() silently activates it (if not otherwise specified) to obtain the
same solutions.
Having introduced all this background information, the stage is set to test
the results produced by both packages. To demonstrate that package cna
arrives at exactly the same solutions as those produced by the classical QMC
procedure, the argument method is going to be provocatively set to the value
"QMC" before being passed to the main minimization function. Identical results
would count as evidence that CNA is a pseudo-counterfactual method.
As the examples from package cna are geared for the coincidence analysis,
some of the examples from the help file of function cna() are going the be
used:

library(cna)
data(d.educate)
cna(d.educate, what = "a")

--- Coincidence Analysis (CNA) ---

Factors: U, D, L, G, E

Atomic solution formulas:

Outcome E:

condition consistency coverage complexity
L + G <-> E 1 1 2

U + D + G <-> E 1 1 3

Outcome L:
condition consistency coverage complexity

U + D <-> L 1 1 2

The purpose of developing the function causalChain() is less to be a complete
replacement of the function cna(), but rather to show they produce equivalent
results. For this reason, it will only be compared with the atomic solution
formulas (asf, printed using the argument what = "a") that are part of the
output produced by function cna().

cc <- causalChain(d.educate, method = "QMC")
cc

M1: U + D <=> L

M1: L + G <=> E
M2: U + D + G <=> E

218 10 QCA Extensions

As it can be seen, the classical QMC algorithm produces exactly the same
atomic (parsimonious) solutions as those produced by the package cna. The
output is not completely similar, but the results are identical: there are two
models produced by for the outcome E and one produced for the outcome
L. As already mentioned, the two models for outcome E are produced by
activating the argument all.sol, to find the disjunction G + U + D which is
otherwise not minimal. Just like package cna, the package QCA is also able
to identify the full model space of a solution.
Although not printed on the screen, the resulting object contains the mini-
mization results for all columns in the data d.educate.

names(cc)

[1] "U" "D" "L" "G" "E"

cc$U

M1: d*L => U

The minimization for the outcome U, despite being sufficient, is not revealed
as necessary because it’s coverage for sufficiency (which is the same as the
consistency for necessity) is less than the coverage cut-off specified by the
argument sol.cov from function minimize() defaulted to 1. This is revealed
by the right arrow sign => only, whereas to be part of a causal chain, the
atomic solutions have to be both sufficient and necessary, as displayed in the
output for outcomes E and L with the double arrow sign <=>.
To inspect the actual inclusion and coverage scores, each solution is an object
of class "qca" which has a component called IC:

ccEIC

inclS PRI covS covU (M1) (M2)

1 G 1.000 1.000 0.571 0.143 0.143 0.143

2 U 1.000 1.000 0.571 0.000 0.143
3 D 1.000 1.000 0.571 0.000 0.143
4 L 1.000 1.000 0.857 0.000 0.429

M1 1.000 1.000 1.000
M2 1.000 1.000 1.000

As both models for the outcome E have inclusion and coverage equal to 1,
they are identified as necessary and sufficient, hence part of the causal chain
model. The second example from the function cna() uses a well known Krook
(2010) data on representation of women in western-democratic parliaments:

10.2 Coincidence Analysis: CNA 219

data(d.women)
cna(d.women, what = "a")

--- Coincidence Analysis (CNA) ---

Factors: ES, QU, WS, WM, LP, WNP

Atomic solution formulas:

none

I have deliberately modified the original example command in the function,
to emphasize a certain aspect that I am going to refer immediately. For the
moment, let us inspect the result from function causalChain():

causalChain(d.women, method = "QMC")

M1: WS + es*LP + ES*WM + QU*LP <=> WNP
M2: WS + ES*WM + QU*LP + WM*LP <=> WNP

While the default settings of the function cna() do not reveal any atomic
solution formulas, the function causalChain() accurately reflects the results
published by Krook. The original example command from package cna con-
tains an additional argument called maxstep, that has three values:

data(d.women)
cna(d.women, maxstep = c(3, 4, 9), what = "a")

--- Coincidence Analysis (CNA) ---

Factors: ES, QU, WS, WM, LP, WNP

Atomic solution formulas:

Outcome WNP:

condition consistency coverage complexity
WS + ES*WM + es*LP + QU*LP <-> WNP 1 1 7
WS + ES*WM + QU*LP + WM*LP <-> WNP 1 1 7

Using these settings, the function cna() is also able to reveal Krook’s necessary
and sufficient conditions. From the help file of the function, we learn more
about the argument maxstep, which has a form of c(i, j, k), that indicates:

. . . the generated asf have maximally j disjuncts with maximally i conjuncts each
and a total of maximally k factors (k is the maximal complexity).

This argument raises a question about how the CNA algorithm works. Natu-
rally, users can experiment with various combinations of i, j and k, but the
bottom line is that nobody knows for sure to which is the set of minimal values
that produces a complete causal chain in a reasonable time, as increasing any
of those values will increase the time spent to search for a possible solution.

220 10 QCA Extensions

This is even more important as some of the values might yield a necessary
and sufficient model for one particular outcome, but not for another outcome.
In order to make sure that such necessary and sufficient models are found
(if they exist) for all outcomes, the values from the argument maxstep would
have to as large as needed, and this increases the search time. The explanation
from the help file is revealing:

As the combinatorial search space for asf is potentially too large to be exhaustively
scanned in reasonable time, the argument maxstep allows for setting an upper
bound for the complexity of the generated asf.

By setting a default (low) upper bound for the complexity, neither minimality
nor exhaustiveness are guaranteed. The search space is indeed very large,
sometimes, and it should be reduced to find at least some solutions. But some
other times it may happen that a minimal solution exists above the default
bound, and many more complex disjunctions even above that.
In contrast, the function causalChain() need not to be told of such bounds
as it performs an exhaustive search to find: (a) all possible prime implicants,
at all levels of complexity, and (b) all possible solutions from a given prime
implicants chart. Since the CCubes algorithm is exact and exhaustive, this is
perfectly possible for classical QCA minimizations on truth tables.
It is true however, that using a lower threshold for the solution consistency
sidesteps a finite PI chart and the search space potentially increases to infinity.
In such situations, some upper bound is needed and if not otherwise specified it
is silently set to a default of five prime implicants per solution, an upper bound
that can be modified via the argument sol.depth in function minimize().
Continuing the comparison with package cna, it has other interesting features
for causal analysis. By default, all factors from a certain dataset are rotated
as outcomes, having all other columns as causal conditions. But this need not
always be the case, in some situations theory might stipulate for sure which
causal condition happens before which other effect. In a way, this looks very
similar to declaring a SEM diagram in a path analysis.
To achieve this, the function cna() provides the argument called ordering,
which has to be specified as a list where each component might have one or
several factors on the same level. The net effect is to make sure that temporally
antecedent factors may never be used as outcomes for the temporally subse-
quent factors. The complementary argument called strict dictates whether
factors from the same temporal level may be outcomes for each other.

data(d.pban)
mvcna(d.pban, ordering = list(c("C", "F", "T", "V"), "PB"),

cov = 0.95, maxstep = c(6, 6, 10), what = "a")

--- Coincidence Analysis (CNA) ---

Causal ordering:
C, F, T, V < PB

10.2 Coincidence Analysis: CNA 221

Atomic solution formulas:

Outcome PB=1:

condition consistency
C=1 + F=2 + C=0*F=1 + C=2*V=0 <-> PB=1 1
C=1 + F=2 + C=0*T=2 + C=2*V=0 <-> PB=1 1

C=1 + F=2 + C=2*F=0 + C=0*F=1 + F=1*V=0 <-> PB=1 1
C=1 + F=2 + C=2*F=0 + C=0*T=2 + F=1*V=0 <-> PB=1 1
C=1 + F=2 + C=0*F=1 + C=2*T=1 + T=2*V=0 <-> PB=1 1
coverage complexity

0.952 6
0.952 6
0.952 8
0.952 8
0.952 8

... (total no. of formulas: 14)

One thing to notice, at this command, is that it uses a different function
called mvcna(), which is a shortcut for using the main function cna() with the
argument type = "mv". The function needs to be told what kind of data is
used, while package QCA automatically detects it. That is only a matter of
convenience, but more importantly it leads to a drawback for package cna,
because it apparently cannot use a mix of different types of sets in the same
data, as indicated in the help file of the function cna():

. . . data comprising both multi-value and fuzzy-set factors cannot be meaningfully
modelled causally.

This is an absolute major drawback that is already solved in package QCA
since many years ago (for multi-value sufficiency, see Eq. (6.2)), accepting any
kind of data for QCA minimizations, and now for causal modeling as well.
Returning to the actual command, a coverage threshold of 0.95 is used, to
relax the very strict default value of 1, generating 14 different models for the
outcome PB. While the similar argument ordering can also be fed as a list for
the function causalChain(), I took the liberty of improving the specification
of the temporal order in a single string, as customary for many other functions
in package QCA:

causalChain(d.pban, ordering = "C, F, T, V < PB", sol.cov = 0.95,
method = "QMC")

M01: C{1} + F{2} + C{0}*F{1} + C{2}*V{0} <=> PB{1}
M02: C{1} + F{2} + C{0}*T{2} + C{2}*V{0} <=> PB{1}
M03: C{1} + F{2} + C{0}*F{1} + C{2}*F{0} + F{1}*V{0} <=> PB{1}
M04: C{1} + F{2} + C{0}*F{1} + C{2}*T{1} + T{2}*V{0} <=> PB{1}
M05: C{1} + F{2} + C{0}*F{1} + T{1}*V{0} + T{2}*V{0} <=> PB{1}
M06: C{1} + F{2} + C{0}*T{2} + C{2}*F{0} + F{1}*V{0} <=> PB{1}
M07: C{1} + F{2} + C{0}*T{2} + C{2}*T{1} + T{2}*V{0} <=> PB{1}

222 10 QCA Extensions

M08: C{1} + F{2} + C{0}*T{2} + T{1}*V{0} + T{2}*V{0} <=> PB{1}
M09: C{1} + F{2} + C{0}*F{1} + C{2}*F{0} + F{1}*T{1} + T{2}*V{0} <=> PB{1}
M10: C{1} + F{2} + C{0}*F{1} + C{2}*T{1} + F{0}*T{2} + F{1}*V{0} <=> PB{1}
M11: C{1} + F{2} + C{0}*F{1} + F{0}*T{2} + F{1}*V{0} + T{1}*V{0} <=> PB{1}
M12: C{1} + F{2} + C{0}*T{2} + C{2}*F{0} + F{1}*T{1} + T{2}*V{0} <=> PB{1}
M13: C{1} + F{2} + C{0}*T{2} + C{2}*T{1} + F{0}*T{2} + F{1}*V{0} <=> PB{1}
M14: C{1} + F{2} + C{0}*T{2} + F{0}*T{2} + F{1}*V{0} + T{1}*V{0} <=> PB{1}

Hopefully, it is by now evident that CNA produces the very same solutions
as the classical Quine-McCluskey algorithm, even though it is not explicitly
using any remainders. This fact leads to the conclusion that CNA is implicitly
using remainders, and therefore qualifies as a pseudo-counterfactual method.
There is however a certain feature of the CNA algorithm that makes it different
from the classical Boolean minimization: it can search for solutions with lower
levels of consistency (note the argument con instead of cov):

mvcna(d.pban, ordering = list(c("C", "F", "T", "V"), "PB"),
con = .93, maxstep = c(6, 6, 10), what = "a")

--- Coincidence Analysis (CNA) ---

Causal ordering:
C, F, T, V < PB

Atomic solution formulas:

Outcome PB=1:

condition consistency coverage
C=1 + F=2 + T=2 + C=2*T=1 <-> PB=1 0.955 1

C=1 + F=2 + T=2 + C=2*F=0 + F=1*T=1 <-> PB=1 0.955 1
complexity

5
7

The major drawback with this command is related to the combination of
arguments con = 0.93 (which automatically sets the related argument con.msc
to the same value) and maxstep = c(6, 6, 10). It is highly unclear how a
regular user could ever find this particular combination of numbers to produce
these solutions, other than trial and error, a fact which makes the usage
experience cumbersome and prone to potential imprecisions.
The function minimize(), and of course the wrapper function causalChain()
from package QCA also has some arguments to allow modifying these con-
sistency thresholds. For instance, the argument pi.cons is equivalent to the
argument con.msc from function cna(), and the argument sol.cons is equiva-
lent to the argument con from the same function. The solutions are again the
same:

10.2 Coincidence Analysis: CNA 223

causalChain(d.pban, ordering = "C, F, T, V < PB", pi.cons = 0.93,
sol.cons = 0.95)

M1: C{1} + F{2} + T{2} + C{2}*T{1} <=> PB{1}
M2: C{1} + F{2} + T{2} + C{2}*F{0} + F{1}*T{1} <=> PB{1}

In this command, it is important to note the removal of the argument method
= "QMC" to allow employing the default method "CCubes", the tweaking of the
prime implicant consistency threshold being a feature that is foreign to the
classical minimization algorithm.
Also, readers might notice the argument sol.depth was not used, despite a
less perfect consistency threshold for the solution. When left unspecified, an
automatic upper bound of 5 prime implicants is used, which is enough to
produce the same solutions found by package cna (the second solution is a
disjunction of exactly 5 prime implicants).
Introducing a coverage threshold of 0.95 for the solution finds six other, differ-
ent solutions, some even more parsimonious. Needless to say they are identical
with those found by function cna():

causalChain(d.pban, ordering = "C, F, T, V < PB", pi.cons = 0.93,
sol.cons = 0.95, sol.cov = 0.95)

M1: C{1} + F{2} + T{2} <=> PB{1}
M2: C{1} + T{2} + C{2}*T{1} <=> PB{1}
M3: F{2} + T{2} + F{1}*T{1} <=> PB{1}
M4: C{1} + F{2} + V{0} + C{0}*F{1} <=> PB{1}
M5: C{1} + T{2} + C{2}*F{0} + F{1}*T{1} <=> PB{1}
M6: F{2} + V{0} + C{0}*F{1} + F{1}*T{1} <=> PB{1}

Since it is now possible to deviate from the exact minimization and plunge
into the fuzzy sets consistencies, the results can become even more spectacular
while still highly consistent (albeit not perfect). The downside is that users
are now over-equipped with multiple arguments, many referring to various
consistency or coverage thresholds. They should know for certain what each
argument does, before changing the defaults.
It is perhaps a good moment to take stock of the overall landscape. While
CNA does not use a traditional truth table (but a coincidence list), QCA is
still a truth table based procedure, and I am arguing this is a feature, not
a problem, for QCA. Besides being an useful intermediate object to inspect
before a minimization, truth tables provide a very synthetic image of the
complex data researchers are analyzing, as described in Chap. 7.
And this is nowhere more relevant than in the examples using calibrated fuzzy
data, such as the one from the next example from package cna:

224 10 QCA Extensions

data(d.autonomy)
dat2 <- d.autonomy[15:30, c("AU","RE", "CN", "DE")]
fscna(dat2, ordering = list("AU"), con = .9, con.msc = .85, cov = .85,

what = "a")

--- Coincidence Analysis (CNA) ---

Causal ordering:
RE, CN, DE < AU

Atomic solution formulas:

Outcome AU:

condition consistency coverage complexity
RE*cn + re*CN <-> AU 0.92 0.851 4
re*DE + cn*DE <-> AU 0.90 0.862 4

Again, the same solutions are obtained by function causalChain(), using the
corresponding arguments sol.cons, pi.cons and sol.cov, with an additional
information. When using a certain threshold for the solution consistency, it
is mandatory to use a similar (better an equal) threshold for the argument
incl.cut from function truthTable(), otherwise the generated truth table will
transform the fuzzy sets to crisp truth tables using a full inclusion score of 1.
This is of course valid for both crisp and fuzzy sets.

causalChain(dat2, ordering = "AU", sol.cons = 0.9, pi.cons = 0.85,
sol.cov = 0.85)

M1: re*CN + RE*cn <=> AU
M2: re*DE + cn*DE <=> AU

Unless otherwise specified, when either pi.cons or sol.cons are set below the
default value of 1, the function causalChain() silently sets the value for the
argument incl.cut to 0.5 to accommodate all possible truth tables for all pos-
sible outcomes. The argument incl.cut is then passed to function minimize(),
which in turn passes it to function truthTable() which uses it to construct
the truth table.
The fact that both algorithms found exactly the same solutions in all presented
examples is yet another evidence of the similarity of the algorithms behind
the cna and QCA packages. For full consistencies, one should expect a 100%
exact overlap between the results of QCA and CNA, but these are not identical
packages and there is no formal proof that their outcome are identical every
single time when lowering the consistency thresholds. Rarely, discrepancies
might appear and further investigation would be needed to uncover the reasons
for their appearance.
But as it can be seen, the arguments from the function causalChain() are
perfectly compatible with those from the function cna(), although it was not
built to completely replace all the features in the sibling package (additional

10.3 Panel/Clustered Data 225

features are rather easy to implement). It is a proof of concept that, given the
similar minimization procedures, QCA can be successfully used to perform
causal analysis and achieve the same results.
One crucial difference between CNA (version 2) and QCA is that CNA does
not use a truth table (but a coincidence list), while QCA remains a truth table
based method. Apart from the obvious advantages of creating a truth table,
I argue that QCA preserves a net superiority over CNA because it allows an
exhaustive search, therefore a guaranteed complete list of solutions.
CNA is not guaranteed to be exhaustive, even when a coincidence list is
identical with a truth table. By contrast, there is only a single situation where
QCA might use an upper bound, when searching for solutions with a lower
consistency threshold (using the argument sol.depth). In all other situations
the CCubes algorithm is exact and exhaustive.
As shown, package QCA shares none of the drawbacks identified in package
cna, and benefits from all theoretical achievements related to the Standard
Analysis and Enhanced Standard Analysis, working with various types of coun-
terfactuals, dealing with contradictions, having a single integrated function
to deal with all types of sets (crisp, multi-value, fuzzy), negating multi-value
sets etc.
And best of all, one could only imagine the potential, fruitful interplay between
causal chains and intermediate solutions based on the Enhanced Standard
Analysis, and package QCA is able to provide such possibilities.

10.3 Panel/Clustered Data

For the information presented so far, the functions provided in package QCA
are more than sufficient. There are however recent, cutting-edge theoretical
developments that have not been (yet) implemented in this package. It is
actually impossible for a single software package to keep track of every possible
development, a good reason for other authors to write their own extensions.
R is very well suited for such situations, because the functions from the main
package are public and can be subsequently used in another package, as long
as the new package declares package QCA in the dependency chain. The new
functionality becomes available by simply loading the extension package.
For the remaining sections from this chapter, several other packages will be
introduced, along with their functionality. Since they are outside the scope
of the main package, I will only make a brief introduction and invite users
to further consult the papers and manuals written by their authors. It would
actually be difficult for me to properly describe the functionality of the func-
tions developed by other programmers, other than what it can be read from
their help files.

226 10 QCA Extensions

A first package that is deeply integrated and provides the largest extension
is called SetMethods (Medzihorsky et al. 2017) arrived at version 2.3 at the
time of this writing. Apart from some usual QCA functions that seem to
duplicate part of the existing functionality (XY plots, parameters of fit etc.),
this package has an original set of functions to deal with panel data, and some
others designed for what is called set-theoretic MMR (multi method research).
Adapting QCA to panel data is a natural extension involving temporal events,
presented in Sect. 10.1. Panel data also contain temporal events, but unlike the
previous attempts where the data is cross-sectional, panels are longitudinal
and the data for the same cases are gathered over a larger number of cross-
sectional units over time.
Garcia-Castro and Ariño (2016) paved the way for such an adaptation, and
proposed a number of modified consistency and coverage measures for both
across cases and over time. By facilitating this kind of analysis:

. . . we can infer sufficient and necessary causal conditions that are likely to re-
main hidden when researchers look at the data in a purely cross-sectional fashion.
Further, across-time consistencies can be used as robustness checks in empirical
studies.

The data being spread over cases and years, consistency and coverage mea-
sures can be calculated:
• between cases, in the same year (one measure per year)
• within cases, over the years (one measure per case)
• pooled, combining the measurements for all cases and all years
The between consistency is the most common, with the same equation as for
any other consistency, measuring how consistent are the cases with respect
to the outcome inside each year. It may be seen as a sequence of regular
cross-sectional data consistencies, for each time t:

inclBXt ⇒ Yt =
∑N

i=1min(Xit, Yit)∑
Xit

(10.1)

In this equation, t is held constant to indicate a certain year, and all cases
from 1 to N contribute to the calculation of the between consistency.
The within consistency does the opposite, holding each case i as constant
(one measure per case) and the calculations are performed using the different
measurements of the same case over the years. It essentially measures how the
changes of the same case in condition X are related to the outcome Y of the
same case, across time:

inclWXi ⇒ Yi =
∑T

t=1min(Xit, Yit)∑
Xit

(10.2)

10.3 Panel/Clustered Data 227

It can be seen the two equations are very similar, measuring how consistent
is X as a subset of Y, either between all cases of the same year or within each
case over time.
Finally, the pooled consistency brings together all cases over all years, to cal-
culate a composite (pooled) measure:

inclPX ⇒ Y =
∑T

t=1
∑N

i=1min(Xit, Yit)∑T
t=1

∑N
i=1Xit

=
∑

min(X, Y)∑
X (10.3)

Equation (10.3) can be expressed either in the most simple form (not specify-
ing what to sum meaning that it sums everything, all cases from all years), or
separating the double sums to make it more obvious the summation happens
for both years and cases.
The coverage measures are calculated exactly the same, just replacing the X
in the numerator with Y. In principle, the consistency and coverage measures
work even for two or three unit observations, but the more time measurements
in the panel the more precise the calculations of these measures will become.
There are some other measures specific to panel data, and they would be
better exemplified using a real dataset. The package SetMethods should be
loaded first, to access its datasets and functions:

library(SetMethods)

This package provides a dataset called SchneiderLong, used by Schneider et al.
(2010) to explore the institutional capital of high-tech firms and their export
performance, using on data from 19 OECD countries between 1990 and 2003.

data(SCHLF)
head(SCHLF)

EMP BARGAIN UNI OCCUP STOCK MA EXPORT COUNTRY YEAR
Australia_90 0.07 0.90 1.00 0.68 0.45 0.33 0.19 Australia 1990
Austria_90 0.70 0.98 0.01 0.91 0.01 0.05 0.25 Austria 1990
Belgium_90 0.94 0.95 0.14 0.37 0.26 0.14 0.14 Belgium 1990
Canada_90 0.04 0.21 0.99 0.11 0.62 0.31 0.28 Canada 1990
Denmark_90 0.59 0.78 0.10 0.55 0.53 0.10 0.34 Denmark 1990
Finland_90 0.70 0.97 0.20 0.95 0.02 0.13 0.17 Finland 1990

Apart from the usual conditions and outcome columns specific to QCA, the
package SetMethods requires two more columns for a panel dataset analysis:
one containing an identifier for the years when the data was collected for each
case, and the other containing an identifier for the cases.
A regular dataframe in R has the option of providing the case identifiers using
the row names, and the row names have to be unique. Since the same cases
can be repeated for multiple measurements in time, they cannot be assigned
to the row names and instead specified into a different column.

228 10 QCA Extensions

These columns are used by the function cluster(), with argument unit refer-
ring to the case names and the argument cluster referring to the year. The
overall structure of the function, including all arguments, is presented below:

cluster(data, results, outcome, unit_id, cluster_id, sol = 1,
necessity = FALSE)

The arguments data and results can also be vectors, but their most natural
usage refers to the original dataset. The argument sol specifies the number of
the solution to be selected, in case of multiple models. The argument results
can be used to feed the function with a minimization object of class "qca",
in which case the argument sol is specified as a string of type “c1p1i1” to
specify the exact combination of conservative, parsimonious and intermediate
solution to be selected.
For instance, the following object is created when minimizing the Schneider
data for intermediate solutions (for demonstrative purposes, only the first four
conditions were used, but the package documentation contains the complete
example):

ttSL <- truthTable(SCHLF, conditions = "EMP, BARGAIN, UNI, OCCUP",
outcome = "EXPORT", incl.cut = .9, show.cases = TRUE)

sol_yi <- minimize(ttSL, include = "?", dir.exp = "0, 0, 0, 0")
cluster(results = sol_yi, data = SCHLF, outcome = "EXPORT",

unit_id = "COUNTRY", cluster_id = "YEAR")

Consistencies:

emp*bargain*OCCUP EMP*bargain*occup emp*BARGAIN*occup
Pooled 0.909 0.960 0.924
Between 1990 0.839 0.991 0.838
Between 1995 0.903 0.991 0.912
Between 1999 0.928 1.000 1.000
Between 2003 0.951 0.878 0.954
Within Australia 1.000 1.000 0.791
Within Austria 1.000 1.000 1.000
Within Belgium 1.000 1.000 1.000
Within Canada 1.000 1.000 1.000
Within Denmark 1.000 1.000 0.774
Within Finland 1.000 1.000 1.000
Within France 1.000 1.000 1.000
Within Germany 1.000 1.000 1.000
Within Ireland 1.000 1.000 1.000
Within Italy 1.000 1.000 1.000
Within Japan 1.000 1.000 1.000
Within Netherlands 1.000 1.000 1.000
Within NewZealand 0.414 0.868 0.437
Within Norway 0.965 0.958 0.948
Within Spain 1.000 0.706 1.000
Within Sweden 1.000 1.000 1.000
Within Switzerland 0.880 1.000 1.000
Within UK 1.000 1.000 1.000
Within USA 1.000 1.000 1.000

10.3 Panel/Clustered Data 229

Distances:

emp*bargain*OCCUP EMP*bargain*occup emp*BARGAIN
*occup

From Between to Pooled 0.023 0.026 0.032
From Within to Pooled 0.031 0.017 0.033

Coverages:

emp*bargain*OCCUP EMP*bargain*occup emp*BARGAIN*occup
Pooled 0.194 0.229 0.334
Between 1990 0.231 0.289 0.399
Between 1995 0.206 0.249 0.469
Between 1999 0.174 0.206 0.261
Between 2003 0.184 0.203 0.274
Within Australia 0.415 0.333 0.951
Within Austria 0.075 0.075 0.442
Within Belgium 0.138 0.138 0.372
Within Canada 0.328 0.299 0.545
Within Denmark 0.273 0.273 0.604
Within Finland 0.059 0.059 0.332
Within France 0.070 0.070 0.173
Within Germany 0.236 0.251 0.308
Within Ireland 0.113 0.103 0.580
Within Italy 0.173 0.327 0.276
Within Japan 0.161 0.656 0.064
Within Netherlands 0.150 0.169 0.355
Within NewZealand 1.000 0.917 0.861
Within Norway 0.598 0.739 0.598
Within Spain 0.204 0.828 0.204
Within Sweden 0.061 0.075 0.189
Within Switzerland 0.738 0.315 0.337
Within UK 0.075 0.080 0.282
Within USA 0.037 0.052 0.045

Since this particular example contains exactly one intermediate solution, the
default arguments to select it need not be respecified in the command. Follow-
ing Garcia-Castro and Ariño’s paper, the function returns a complete set of
pooled, between and within consistencies and coverages of the solution terms,
for each unit and each cluster. There are also distances from between to pooled
and from within to pooled, offering a complete snapshot of the complex panel
relations that exist in this dataset.
All of these parameters of fit are calculated for the sufficiency relation, but
otherwise the function cluster() can calculate the same parameters for the
necessity relation, by activating the argument necessity = TRUE.
Package SetMethods has a large variety of functions that greatly extend the
main package QCA, not only for panel data but also for what is probably the
hottest QCA extension, called Set Theoretic Multi-Method Research. Since
both the method and the associated functions are still under a heavy devel-
opment, they are not presented here but readers are warmly encouraged to
follow the literature and the associated functions from this package.

230 10 QCA Extensions

10.4 Robustness Tests

As a middle ground between the qualitative and the quantitative approaches,
QCA has inevitably attracted a lot of attention but also a lot of critique,
especially from the quantitative researchers. One of the particular contested
features of QCA is the ability to work with a small number of cases (fitting
in the small and medium-N world), as opposed to statistical analyses which
require a high number of cases to perform inference testing.
Arguably, it is easier to collect a small sized data, and it requires a lot of effort
to collect data from large scale studies involving thousands of individuals. This
is only apparent, because the data collection is very much different: while
the quantitative studies focus on a standardized approach over thousands of
individuals, the qualitative approach is much more intensive for an in-depth
study of each and every case.
In order to establish, for instance, at which particular values to set the cal-
ibration thresholds, the QCA researcher should have a deep understanding
of not only each separate case but also of each case in comparison with all
the others. In the same situation, the quantitative researcher would simply
calculate the mean and standard deviation, and Chap. 4 shows clearly why
such an approach is not suitable.
Nevertheless, quantitative researchers continue to raise doubts about infer-
ences drawn from a small number of cases (small “sample”) and their ability
to generalize conclusions to a larger “population”. But this is very far from the
QCA approach, which does not use the Central Limit Theorem, it does not use
the normal curve, and it does not use confidence intervals or p-values. Instead,
QCA works by observing patterns of consistency between various configura-
tions of causal conditions, and how they are associated with the presence of
the phenomenon of interest.
A well known, landmark qualitative study is Skocpol’s (1979) book on states
and social revolutions, comparing no more than three cases: France, Russia
and China. These are very rare events, and they all involve crucial moments in
the history of humanity. Obviously, these cases cannot be analyzed using the
standard statistical techniques and the quantitative researchers are powerless
when asked to draw meaningful insights.
On the other hand to abstain from analyzing these cases, just because they
don’t comply with the normal curve, would be an even bigger mistake. There
is a genuine possibility to analyze them using the comparative method, since
they all display the same outcome and there are some obvious similarities, as
well as differences between them.
And this is precisely what QCA does, searching for patterns of consistency
among the causal conditions with the outcome. Three cases are clearly not
enough to apply QCA, even for a moderately complex theoretical model, in

10.4 Robustness Tests 231

terms of number of causal conditions. Marx and Dus,a (2011) have paved
the way for a possible optimal ratio between the number of cases and the
number of causal conditions, and that work should be extended to with more
tests using fuzzy sets. With an optimal such ratio, the Boolean minimization
method can be applied to identify consistency patterns, but the quantitative
researchers continue to compare the results of this algorithmic method with
the standard statistical techniques.
One such critique, emerging from the work of King et al. (1994, notorious for
their interpretation of qualitative research from the quantitative perspective),
refers to the selection of cases being analyzed. Generally in the qualitative re-
search, and more specifically in the QCA, cases being studied are not selected
using random sampling techniques (as it is usually the situation in quantita-
tive research) but quite the reverse, they are selected precisely because they
display something which is theoretically meaningful.
In the language of “sampling”, this is similar to what is called purposive
sampling (a non-probability method) where cases are selected because they
are typical for some research scenario, or inversely because they are deviant
compared to the other cases: something potentially interesting happens in
those cases and we want to find out what.
What is probably most misunderstood is that QCA is a configurational analy-
sis, and the focus on the (number of) cases is of a secondary importance. The
Boolean minimization process is not aware of the number of cases within each
configuration, since the input consists of the configurations themselves. QCA
is less concerned with the number of cases, since the limited diversity phe-
nomenon states that only a few causal configurations are actually observable.
There could be thousands of cases and only a handful of observed configu-
rations, and that is something different from the quantitative focus on the
number of cases. The only situation when the number of cases does count, is
their effect on output value of a particular truth table configuration, either
through the inclusion threshold, or via the frequency cut-off.
This is a rather long introduction to the topic of this section, related to the
robustness of QCA results, but it was necessary to understand that robustness
is a very often ill interpreted topic. It all relates to a natural expectation that
QCA results should be consistent with previous findings. In this respect, it
overlaps with an overarching scientific requirement that a finding is valid
(only) if it can be generalized to future similar research situations, or even
more strict if they can be generalized to a “population”.
But this is a very quantitative assessment of robustness, as if lab results from
a micro research situation are expected to work in the real world scenarios, or
inferences drawn from a sample are expected to be generalized to the entire
population. It is an inferential way of looking at the QCA models, and expects
consistent results on relatively similar input data.

232 10 QCA Extensions

Robustness is indeed an important issue, and it can be approached in a sys-
tematic way. There are so many publications dealing with this issue (some
of the most recent including Skaaning 2011; Hug 2013; Lucas and Szatrowski
2014; Seawright 2014; Ragin 2014; Lucas 2014; Krogslund et al. 2015) many of
which are similar in nature, that is difficult to address all of their arguments.
Arguably, however, many critiques misunderstand and sometimes misinterpret
what has been written before. For instance, Lucas and Szatrowski (2014) argue
that Ragin and Rihoux (2004):

. . . reject simulations, claiming that QCA is for researchers intrinsically interested
in the cases they study.

Upon a careful reading of that paper, there is little evidence that Ragin and
Rihoux explicitly reject simulations. It is true that QCA researchers are in-
trinsically interested in the cases they study, but from here to declaring this
general approach as equivalent to rejecting simulations, is a long stretch.
In a subsequent rejoinder to clarify matters, Lucas (2014) manages to bring
even further confusion over some of them. For instance, Ragin’s example with
the difference between a set membership and a probability is very clear, but
Lucas includes a particular Bayesian interpretation of the probability as a
degree of belief and declares the probability as a mathematical function of
the set membership. This is (at best) an opinion, since no such mathematical
function exists.
The same type of deliberate (since Lucas seems to understand what QCA is
all about but still prefers the) misunderstanding is related to equating the
configurations with the interaction effects. These are strong indicators that,
although he rejects looking at QCA through a quantitative perspective, it is
precisely what he is doing.
Whether or not QCA is able to find the “correct” answer depends on the qual-
ity of the raw data, and to follow Skaaning (2011) on the choice of calibration
thresholds, as well as on the choice of frequency and consistency thresholds
when constructing the truth table. Measurement error is important in both
micro-quantitative and macro-qualitative comparative analyses. On a macro
level, measurement error has a lower influence on the results. Societal indica-
tors fluctuate a whole lot less than individual scores, and if we agree on this
point then it is obvious that “error” has a different meaning in QCA.
In particular, Hug (2013) attempted a more systematic way of looking at the
effect of errors (deleting a case from the analysis, or changing the value of the
outcome) to calculate the extent to which the final solution is preserved: the
results are “robust” if the solution is preserved.
His attempt (exhaustive enumeration) has already been outperformed by
Thiem et al. (2016), with a proper combinatorial method to calculate the
retention rate. The simulations include two types of assumptions: DPA—
Dependent Perturbation Assumption when perturbations depend on each

10.4 Robustness Tests 233

other and are tied ex-ante to a fixed number of cases, and IPA—Independent
Perturbation Assumption when perturbations are assumed to occur indepen-
dently of each other.
The entire procedure is enclosed in the a function called retention() in pack-
age QCA, with the following structure:

retention(data, outcome = "", conditions = "", incl.cut = 1, n.cut = 1,
type = "corruption", dependent = TRUE, p.pert = 0.5, n.pert = 1)

Similar to the main truthTable() function, the arguments incl.cut and n.cut
decide which configurations are coded positive, negative or left as logical re-
mainders. The argument p.pert specifies the probability of perturbation under
the independent perturbations assumption, while argument n.pert specifies
the number of perturbations under the dependent perturbations assumption
with at least one perturbation needed to possibly change a csQCA solution,
otherwise the solution remains the same (retention rate equal to 100% if zero
perturbations occur).
The argument type is the one to choose between "corruption" when various
values in the conditions are changed (either from 0 to 1 or from 1 to 0), or
"deletion" when the result is the probability of retaining the same solution
if a number of cases are deleted from the original data.
The effect of corrupting a case is to allocate it to a different truth table
configuration. This may or may not have an influence on the final result,
as the input in the minimization procedure is not the cases themselves but
the truth table. A case leaving a certain configuration might influence the
consistency of that configuration, which in turn might affect its output value.
The same with a new case arriving into another truth table configuration.
The effect of deleting a case can have an effect over the same truth table
configuration, either by modifying its consistency, or possibly by transforming
it into a remainder if it does not pass the frequency cut-off.
It is also possible for a corruption or a deletion to not have any effect at all,
depending on the number of cases and the consistency of each configuration.
And even in the case the configurations are changed, it can still lead to the
same solution if those configurations contain redundant (minimizable) condi-
tions. In all these situation, the solution is retained. The solution is changed
in the inverse situation: when the number of cases per configuration is small,
the consistency score the configuration being changed is not very high, and
the configuration being changed plays an important role in the minimization.
However this scenario is perfectly logical in a macro-qualitative comparative
setting, changing the value of a case (a country) has the same effect as replac-
ing one country with another. Under these circumstances the solution being
modified should not be surprising at all, especially when the group of coun-
tries being analyzed is small. What is truly surprising is Hug’s (and all the
others’) expectation the solution should be retained.

234 10 QCA Extensions

Using his own version of the data, the exact retention probability can be
calculated with:

Hug <- data.frame(matrix(c(
rep(1,25), rep(0,20), rep(c(0,0,1,0,0),3),
0,0,0,1,0,0,1,0,0,0,0, rep(1,7),0,1),
nrow = 16, byrow = TRUE, dimnames = list(
c("AT","DK","FI","NO","SE","AU","CA","FR",

"US","DE","NL","CH","JP","NZ","IE","BE"),
c("P", "U", "C", "S", "W"))

))

retention(Hug, outcome = "W", type = "corruption", dependent = FALSE,
p.pert = 0.025, incl.cut = 1)

[1] 0.7962228

In the independent perturbation assumption, using a perturbation probability
of 0.025 when corrupting cases, the exact retention rate is 0.796, which means
the probability that the solution will change is 0.204. This is neither good,
nor bad: it is what it is.
A different type of simulation was performed by Seawright (2014), who gener-
ated a truth table based on a certain Boolean function, then randomly sampled
(with replacement) from those configurations in various sizes between 20 and
100. Apart from the five conditions in the initial Boolean function, Seawright
introduced three other conditions that are irrelevant, and tested to what ex-
tent the limited diversity problem (including the remainders) affects the final
solutions.
In the absence of a replication file, it is unclear how this simulation study was
performed. His study raises more questions than answers:
• How many positive configurations did the generated truth table had?
• How many negative configurations?
• How did Seawright made absolutely sure the three additional conditions

are causally irrelevant?
It is quite possible, even through random sampling, that causally relevant
structures were introduced in the initial truth table for the additional three
conditions. This should be tested, verified and ultimately validated, assuming
of course the that Seawright was careful enough and used a mandatory starting
point for the sampling procedures via the base function set.seed(), otherwise
none of his results can ever be replicated.
It is interesting to note that, although QCA is inherently applicable to a
small and medium sized number of cases, Seawright treats the input as if it
was drawn from a known large population. Leaving aside his justified intention
to test the results against something known, in reality he performed a very
dubious exercise, as it is also unclear if he sampled from positive configurations
(in which case the underlying model should be preserved to a greater extent)
or from both positive and negative output configurations.

10.4 Robustness Tests 235

Both positive and negative output configurations are important: the positive
ones influence the underlying model, while the negative ones contribute to
eliminating remainders that would otherwise incorrectly contribute to parsi-
mony (thus artificially altering the final solutions).
A newer, but similar to Seawright’s simulation involving a data generating
structure, was performed by Baumgartner and Thiem (2017, online first),
who also make a comprehensive evaluation of the inappropriate use or inade-
quate tests by the previous critiques, especially Lucas and Szatrowski. Their
approach is not to sample from the saturated truth table, but instead to delete
all possible combinations of rows (from 1 to 14) and perform an exhaustive
enumeration of the model preserving solutions. Opposite to Seawright, they
found a retention rate of 100% for the parsimonious solution in all their simu-
lation setups, with lower retention rates for the conservative and intermediate
solutions.
Baumgartner and Thiem’s paper serve a dual purpose: demonstrate why all
the other previous attempts to measure the QCA robustness are incorrect
(thus defending QCA), while at the same time they claim the parsimonious
solution is the only correct solution and the conservative and intermediate
solutions are also incorrect (thus indirectly becoming QCA critics themselves).
Both Seawright (2014) and Baumgartner and Thiem (2017, online first) start
with the same setup of data generating structure using an underlying Boolean
function, and they reach different conclusions using different methods to test
robustness, yet it can be shown that both studies are incorrect.
In his attempt to verify the role of the limited diversity, Seawright most likely
included all remainders in the analysis to obtain the parsimonious solution,
and this is definitely a mistake. The decision to produce only the parsimonious
solution ignores years of efforts by an entire community of QCA theoreticians
and practitioners, around the intermediate solutions. Directional expectations
should be used, and untenable, difficult or even impossible counterfactuals
should be avoided from the minimization process.
A similar mistake can be identified in Baumgartner and Thiem, although to
their credit a proper effort was invested to calculate intermediate solutions.
In their case, the method is partially right and the conclusion is plain wrong,
based on an ad-hoc definition of what a “correct” solution is.
The community agreed standard is that both the conservative (CS) and the
intermediate solutions (IS) are supersets of the parsimonious solutions (PS).
This means that every time a PS is “correct”, the other two solutions are
also correct because they contain the elements from the PS. Baumgartner
and Thiem’s definition, inspired from Seawright, is that a solution is correct
only: “. . . iff it does not commit causal fallacies. . . ” (i.e. if it does not contain
causally irrelevant factors).

236 10 QCA Extensions

In a real limited diversity scenario (the norm in QCA research) the number
of empirically observed configurations is low and the number of remainders
is high. In such a situation, it is absolutely certain that CS will not be as
parsimonious as PS (i.e. CS will almost always contain causally irrelevant
factors), therefore in their definition CS is bound to be “incorrect”.
It is the very reason why the parsimonious solutions is called “parsimonious”,
having a more simple structure, opposed to the conservative solution which
is highly complex when the diversity is very limited. To change the nature of
what is “correct”, Baumgartner and Thiem should have provided some kind
(any kind) of philosophical, formal logic or mathematical demonstration of the
incorrectness. Instead, they resorted to a change in the definition, and that is
not embraced by the larger community which issued a Statement on rejecting
article submissions because of QCA solution type.1

Defining a solution as “correct” if it does not contain any causally irrelevant
factors, automatically increases the likelihood that a conservative solution is
“incorrect”, the more rows are eliminated from the saturated truth table.
Despite the article not referring to a specific minimization algorithm, their
proof rely on a series of computer simulations performed with the package
QCApro version 1.1-1 (a fork of an older version of the main package QCA),
using the eQMC algorithm developed by myself in 2007 and described in
Sect. 9.1. Since the eQMC algorithm is pseudo-counterfactual, it is implicitly
using all possible remainders, including all those untenable, difficult or even
impossible counterfactuals. Such an approach has been proven as incorrect for
many years, leading to the ESA—Enhanced Standard Analysis.
This fact alone should be sufficient to dismiss Baumgartner and Thiem’s con-
clusions, but there is even more to reveal. In their simulations, all possible
combinations of rows are iteratively eliminated from the saturated truth table,
and test if any components from the parsimonious solution are retained. Ac-
cording to this procedure, the expected percentage of “correct” conservative
solutions should approach zero when the number of deleted rows approaches
the total number of rows in the saturated truth table (when the diversity gets
more and more limited).
Figure 4 in their paper shows the correctness preserving curve for the QCA-
CS rapidly approach zero after 5 deleted rows, and springs back to life after
11 deleted rows, with an implausible 100% correct ratio for all 16 rows being
deleted. In this extreme situation with all rows from the truth table deleted,
a solution is impossible since there is no data remaining at all.
By mechanically applying their definition, an impossible situation (no solu-
tion) is counted as “correct” because it does not contain causally irrelevant
factors. This is a logical fallacy, because something unknown (no solution)

1 http://www.compasss.org/files/compasss-rejection-policy-statement-20170814.html.

http://www.compasss.org/files/compasss-rejection-policy-statement-20170814.html

10.4 Robustness Tests 237

cannot be considered correct or incorrect, it is just unknown. Consider this
simple example containing seven values:

correct <- c(1, 0, 0, 0, NA, 0, 1)
mean(correct)

[1] NA

The result of averaging this vector is unknown, because the fifth value is un-
known (not available). The average value can only be calculated by removing
the unknown value, in which case it would be 2 out of 6, not 3 out of 7:

mean(correct, na.rm = TRUE)

[1] 0.3333333

In the Baumgartner and Thiem’s case, it would imply calculating the per-
centage of “correct” conservative solutions only for those situations when a
minimization is possible. After 11 rows being deleted from the truth table,
what they report as the percentage of identified “correct” solutions is in fact
the proportion of situations when no solutions are possible. For instance, there
are choose(16, 14) = 120 possible situations of removing 14 rows out of the
total of 16 from the truth table. In 10 of these situations, no solution is pos-
sible with a percentage of 10/120 = 0.083, which is exactly the percentage
reported as “correct” in the article, while the proper percentage is 0/110 = 0.
It is not only the definition of “correctness” which is artificially bended to-
wards their hypothesis, but also the operationalization of this definition. To
consider an inexistent solution as correct counts as a programming error, and
their entire simulation is flawed. Combined with the fact that a parsimo-
nious solution is not guaranteed to be correct in the limited diversity scenario
(because it involves difficult, untenable or impossible counterfactuals), their
ambition to reset the de-facto QCA standards get suddenly deflated.
The same phenomenon can be identified for the intermediate solutions, when
the correctness preserving curves display a very quick recovery after 11 elimi-
nated rows, whereas they should approach zero the more rows are eliminated
from the saturated truth table. By removing this logical fallacy, all curves
except for the parsimonious solution should approach zero, the more limited
diversity is accounted for.
The constant rate of 100% correctness for the parsimonious solutions is also
highly implausible, and on a closer inspection it appears to be the result of
another programming artifact. For instance, when removing the third row
from the saturated truth table (using the same underlying model aB+Bc+D),
there are not one but two parsimonious solutions: aC+Bc+D and aB+Bc+D.
Clearly, the first one does not conform to their own definition, since the com-
ponent aC is not part of the expression that generated the data, this particular
simulation should be counted as a half success.

238 10 QCA Extensions

There are multiple other similar situations for all possible combinations of
deleted rows, for instance deleting the rows 3 and 9 produce three parsimo-
nious solutions: aC+Bc+D, aB+Bc+D, and aB+Ac+D, and in the most extreme situ-
ations there are no less than 12 possible parsimonious solutions, out of which
only one conforms to their own definition.
Trying to solve this problem, Baumgartner and Thiem resort to yet another
ad-hoc definition of causal correctness, by considering the entire set of models
(i.e. solutions) as correct if at least one of the models is correct. In justifying
their decision, they quote Spirtes et al. (2000, p. 81), but that page is not
even remotely related to this particular choice. The only correctness property
theorem found there is:

If the input to any of the algorithms is data faithful to G, the output of each of
the algorithms is a pattern that represents the faithful indistinguishability class of
G.

Leaving aside the fact that Spirtes et al. (2000) present statistical (not
Boolean) algorithms to identify causal structures in acyclic directed graphs,
it is highly unclear how did their theorem of correctness justifies the claim
that all models are correct if at least one is correct.
Baumgartner and Thiem’s paper relies not only on a correctness definition
that is not embraced by the community, but as it seems that definition is even
further artificially bended to fit the computer generated results. In a normal
scientific enquiry, data should be used to test a hypothesis or a definition, but
in this case the definition itself is constructed to 100% fit the output produced
by the Boolean minimization algorithm.
For each simulation, the causal structure is known but it must not be for-
gotten that in the real life researchers have absolutely no idea which of the
concurrent models is the true model representing the underlying causal struc-
ture, therefore all models should be given the same weight. In such situations
displaying model ambiguity, the success rate should be calculated as 1 over
the total number of models, given that only one model faithfully represents
the true causal structure.
Counting such situations as 100% correct, when only one model is correct,
could only be described as a programming abuse if it was intentional, or
otherwise as a programming error. Either way, it is clear they published results
that are misleading, as a direct consequence of an artificially constructed
initial definition.
From a Boolean minimization perspective, the fact that parsimonious solu-
tions contain less causally irrelevant factors is perfectly logical given that
eliminated rows are either irrelevant in the minimization process, or they
are included back through the remainders, which means the simulations are
arranged in such a way that parsimonious solutions will always contain com-
ponents from the data generating expression.

10.4 Robustness Tests 239

Contrary to their claim, the parsimonious solution does not have a magical
property to uncover causal structure, it is merely a direct consequence of the
Boolean minimization procedure: the more remainders are included, the more
parsimonious the solutions will become (but never more parsimonious than
the data generating causal structure).
To the other extreme the more rows are eliminated from the saturated truth
table, the less observed configurations are served as input for the Quine-
McCluskey procedure, the more severe the limited diversity problem and the
more complex the conservative solutions will become.
Their article describe the built in properties of the Quine-McClukey (QMC)
Boolean minimization algorithm, and they sell it as a groundbreaking finding
to claim for instance that QCA-CS (conservative solution of QCA) is incorrect
by employing the QMC algorithm. But they fail to mention that QCA-CS is
in fact QMC proper, therefore produce a logical impossibility because what
they truly claim is that QMC demonstrates that QMC is incorrect.
As Baumgartner and Thiem do not present a formal demonstration of their
claims (they resort to simulated results as a form of inductive pseudo-
demonstration), their paper can be subjected to at least two logical fallacies.
The first is called a “definist fallacy” (Bennett 2012, p. 96):

A has definition X. X is harmful to my argument. Therefore, A has definition Y.

Similarly, it is also a case of a circular definition fallacy: the simulated results
are determined as “correct” using an ad-hoc definition, and the definition is
“demonstrated” as correct by the simulated results.
Given this series of logical impossibilities, logical fallacies and (ab)use of pro-
gramming to change the true nature of my own algorithm eQMC, it is difficult
to attribute very much credibility to the conclusions presented in this paper.
Going back to Seawright (2014, p. 121), he presents one other interesting
conclusion that QCA is “fairly prone to false-positive results.” That is, for
some of the solutions, at least one additional condition is found in the solutions
despite not being causally related to the outcome, according to the initial
Boolean function.
According to Baumgartner and Thiem, this effect never happens for the par-
simonious solution if the causally irrelevant conditions are truly random. As
mentioned, this finding can also be interpreted as highly subjective as they
consider a model as correct if at least one solution preserves the causal struc-
ture, thus disregarding model ambiguity. It would have been interesting to
validate Seawright’s own conclusions, but in the absence of a replication file
this is not possible.
However on the official R repository (CRAN), there are some other packages
dealing with QCA, among which one being called QCAfalsePositive, cre-
ated by Braumoeller (2015a) as an applied programming tool to demonstrate

240 10 QCA Extensions

the findings from Braumoeller (2015b). This package has a number of inter-
esting functions to calculate the probability of producing a type I error when
including remainders. Applied to QCA, a type I error occurs when a solu-
tion contains components that appear by chance, rather than configurational
merits.
Further experimentation should be performed to assess the usefulness of these
inferential tests. At a first sight, and acknowledged by Braumoeller:

. . . If a solution set is only found in a single case and the outcome of interest occurs
in 90% of the observations, the probability of a false positive result is dangerously
high. . .

This is very true but on the other hand it might also reflect the inherent
uncertainty that is specific to inferential tests when the number of observations
is very small. It might be the probability of a false positive is high, or it might
be that an inferential test is highly imprecise with only one case. However,
such initiatives to involve statistical testing, wherever possible, are laudable.
Although QCA is inherently a method that has absolutely nothing to do with
probability and statistics, there are some possible intersections, especially at
the simplest 2 × 2 tables and XYplots where Bayesian analysis on (conditional)
proportions might prove to be interesting, and possibly very useful (see for
instance Barrenechea and Mahoney 2017, online first).
Dealing with robustness is another associated package from CRAN, named
braQCA (Gibson and Burrel 2017) which is built to assess how sensitive
is a QCA solution to randomness, using bootstrapping. Their main function
returns a probability that a given solution is reached by chance, as it would
be the result of a random experiment.
What is particularly interesting about this package is its ability to offer possi-
ble threshold values for the inclusion and frequency cut-offs, which can served
as data specific guidelines to reduce the probability that a given QCA solution
is spurious. This is also an interesting combination of classical statistics with
QCA, and more work is needed to further demonstrate its practical utility for
the QCA research.

Chapter 11
Less Known Features

This final chapter is a more practical and applied one, describing in detail
the rest of the graphical user interface as well as the most used functions in
package QCA. Although widely used, there are still some not so obvious fea-
tures that remain unemployed in most of the cases. In a way, this is a chapter
about all the little secrets that each function has, that in many situations are
capable of making the usage experience as straightforward as possible.
Both the written functions and the graphical user interface were designed
with this very purpose, to give the impression of extreme simplicity and allow
users to concentrate less on the R code and focus more to the substantive
theoretical part of the analysis.
A lot of effort has been spent to write the R code in order to allow all possible
styles of specifying causal expressions. Negation, for example, can be specified
in four different ways:
• by subtracting from 1, using the 1 - A type of expression when the condition

A is a fuzzy numeric or even logical vector
• by using the universal negation exclamation sign !A, for logical vectors
• by using a tilde in front of the condition’s name, like: ~A
• by simply using lower case letters, especially in a multiple sets expression

such as a*B

The exclamation sign is already part of the base R, and it is implemented
in most programming languages. Using lower and upper case letters was the
original style from the beginnings of QCA and it is still very much used, while
using a tilde seems to be the new standard, a reason for which most of the
functions have an argument called use.tilde to format the output and it
recognizes it when signaling a negation.
All these possibilities are not native to a software like R, they had to be
custom developed. While there are specific tips and tricks for each function,

© Springer International Publishing AG, part of Springer Nature 2019
A. Dus,a, QCA with R, https://doi.org/10.1007/978-3-319-75668-4_11

241

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-75668-4_11&domain=pdf
https://doi.org/10.1007/978-3-319-75668-4_11

242 11 Less Known Features

there are also some overall features that are valid for multiple functions across
the package.
For example, in the past some functions had an argument called incl.cut,
while others had a similar argument called incl.cut1, although both were in
fact referring to one and the same thing, specifying an inclusion cut-off. The
former argument incl.cut1 is still possible (all functions are backwards com-
patible with older arguments), however the modern versions of the package
have all these arguments uniform across functions, in this case using the more
universal incl.cut.
Specifying multiple inclusion cut-offs is made possible using R’s vectorized
nature. Many function arguments accept one value as an input, and sometime
more values using a vector. In fact, one simple but often forgotten R feature is
that single values are in fact vectors of length 1 (scalars). But there is nothing
wrong with providing multiple values with one argument, as in the case of the
directional expectations argument dir.exp, making the two former separate
arguments incl.cut1 and incl.cut0 redundant in favor of a single argument
incl.cut. This is just one example of small, but very effective ways to simplify
the user experience as much as possible.

11.1 Boolean Expressions

There are multiple functions that deal with arbitrary sum of products (SOP)
type of expressions, specified as text: pof(), fuzzyor(), fuzzyand(), compute(),
sop() to name a few, but basically these types of strings are recognized
throughout the package, for instance the function truthTable() recognizes
whether the outcome is negated or not, using a tilde sign.
The standard way of specifying strings in R is to enclose them within double
quotes, and this is recommended as a good practice advice. In addition, some
of the functions recognize a negation of an object using a tilde sign, even
without the quotes.
Most of these functions rely heavily on a less known function called
translate(), that transforms any SOP expression into a corresponding
matrix with the names of the conditions on the columns, and the values
from the expression in the cells. This function is the workhorse for almost all
other functions that deal with such expressions, and it is capable of detecting
negations and even double negations such as:

translate("A + ~b*C")

A B C
A 1
~b*C 1 1

11.1 Boolean Expressions 243

In this example, the condition B is negated twice, using both the lower case
letter notation and the tilde. This is actually important, especially when such
expressions contain object names from the user’s workspace, it is also a good
practice advice to name all objects using upper case letters. Naturally, this
advice extends to the columns names from a calibrated dataset, to allow the
detection of negated conditions using lower case letters.
Most of the following examples are going to use this function translate(),
even though it has nothing to do with the QCA methodology. It is just a sub-
stitute for any of the QCA specific functions that deal with string expressions.
What works for this function, works for all of them, for instance being able
to recognize multi-value sets, and even negated them if the number of levels
is known for each set name:

translate("A{1} + ~B{1}*C{1}", snames = "A, B, C", noflevels = c(2, 3, 2))

A B C
A{1} 1
~B{1}*C{1} 0,2 1

The output is relatively straightforward, with one row for each of the dis-
junctive terms in the expression, the cells representing the values for each
set, after translating the expression. All of those values are subsequently used
in the recoding step: fuzzy sets are inverted (if negated), while binary and
multi-value crisp sets are transformed (recoded) to a binary crisp set. In this
example, values 0 and 2 for the set B are going to be recoded to 1, and the
former value 1 is going to be recoded to 0.
The expression ~B{1} is translated as “all values in set B except 1”, and since
the set B has three values, all others cannot be anything else but 0 and 2,
assuming the set is properly calibrated and values always start from 0.
Using a star sign “*” to separate conjunctions is recommended, but not needed
for multi-value expressions, the set names being already separated by using
the curly brackets notation for the values. The same is true when providing
the set names:

translate("AB + cD", snames = "A, B, C, D")

A B C D
AB 1 1
cD 0 1

Specifying the set names has another useful side effect, to order the terms in
the expression according to the order of their names in the snames argument.
In the absence of the set names, they are by default sorted alphabetically as
in the following example:

244 11 Less Known Features

sop("(URB + LIT)(~LIT + ~DEV)")

[1] "~LIT*URB + ~DEV*URB + ~DEV*LIT"

By contrast, when the set names are provided they are properly sorted in the
output. Here, the condition URB precedes the condition LIT and the first
term of the expression changes:

sop("(URB + LIT)(~LIT + ~DEV)", snames = "DEV, URB, LIT")

[1] "URB*~LIT + ~DEV*URB + ~DEV*LIT"

If a dataset is provided, neither the number of levels nor the set names are
needed because they are taken directly from the dataset:

data(LM)
compute("~DEV{0} + URB{1}*IND{1}", data = LM)

[1] 1 1 1 0 1 1 1 0 0 1 0 1 0 0 0 0 1 1

The example above uses the multi-value version of the Lipset data, where
the causal condition DEV has three values. Negating the value 0 implies all
other values, 1 and 2. The same effect is obtained by directly specifying them
between the curly brackets:

compute("DEV{1,2} + URB{1}*IND{1}", data = LM)

[1] 1 1 1 0 1 1 1 0 0 1 0 1 0 0 0 0 1 1

There are many ways to specify the causal conditions into an expression, and
the functions from package QCA are compatible with those provided by the
base R:
with(LM, compute("~DEV{0} + URB{1}*IND{1}"))

[1] 1 1 1 0 1 1 1 0 0 1 0 1 0 0 0 0 1 1

Out of all functions in package QCA that deal with Boolean expressions, the
function pof() to calculate parameters of fit is by far the most versatile. Just
like compute() it evaluates a Boolean expression with either objects from the
workspace or column names from a specific dataset, and it does that relative
to a certain outcome for sufficiency or necessity relation. This function is
the Swiss army knife, many input and many purpose function of the entire
package, and it is employed by all other functions that require parameters of
fit (most notably the output from the main minimization function).
The most basic type of input, when thinking about inclusion, coverage and all
other parameters of fit, involves two calibrated vectors. The first will play the
role of the causal condition and the second the role of the outcome. In fact,
the first two arguments of the function pof() are called setms and outcome.

11.1 Boolean Expressions 245

The name setms denotes “set membership scores”, to emphasize that almost
any object can contain such scores: a data frame, a matrix of implicants, and
simple vectors, and this argument can even be a string containing a Boolean
expression. It can even be a numeric vector containing the row numbers from
the implicants matrix, in which situation the setms argument is automatically
transformed into their corresponding set membership scores. Since it can carry
so many things, the function is specifically programmed to recognize what kind
of operations should be performed on which kind of input.
The argument outcome can also be a string containing the name of the outcome
(and it will be searched for in the list of objects or in a specified dataset), or
it can be a proper vector containing the membership scores for the outcome
set. To begin an example, the fuzzy version of the CVF data will be used
(Cebotari and Vink 2013):

data(CVF)
conditions <- CVF[, 1:5]
PROTEST <- CVF$PROTEST

Here, the conditions are the first five columns of the CVF dataset, and the
outcome is the column called PROTEST. Both are now separate objects in
the workspace, and can be used as such and negated using the 1- notation:

pof(1 - conditions, PROTEST, relation = "sufficiency")

inclS PRI covS covU
--
1 ~DEMOC 0.601 0.354 0.564 0.042
2 ~ETHFRACT 0.614 0.337 0.661 0.036
3 ~GEOCON 0.601 0.246 0.317 0.000
4 ~POLDIS 0.493 0.250 0.631 0.035
5 ~NATPRIDE 0.899 0.807 0.597 0.025
--

A number of things have happened, even with a simple command like this one.
First of all, the function pof() automatically detected the input for the setms
argument is a dataset. Consequently, it determined that each column contains
set membership scores and calculated parameters of fit for each. Last but not
least, it determined that each such column should be negated (because all
conditions in the dataset were subtracted from 1), and their corresponding
names in the output have a tilde in front to signal their negation.
This is a simple dataset containing single columns, but there are examples of
datasets containing set membership scores for more complex expressions, such
as the solutions resulting from function minimize() or those resulting from the
function superSubset(). As in the case of most functions, the output of these
two functions are lists containing all sorts of components, the relevant ones for
this section being the component pims (prime implicants membership scores)
from function minimize() and component coms (combinations membership
scores) from function superSubset().

246 11 Less Known Features

For more complex expressions, it applies the negate() function to present
their negated counterpart in the output.

ttCVF <- truthTable(CVF, outcome = "PROTEST", incl.cut = 0.8)
cCVF <- minimize(ttCVF, details = TRUE)
colnames(cCVF$pims)

[1] "DEMOC*ETHFRACT*GEOCON"
[2] "ETHFRACT*GEOCON*POLDIS"
[3] "DEMOC*ETHFRACT*POLDIS*natpride"
[4] "DEMOC*GEOCON*POLDIS*NATPRIDE"
[5] "democ*ethfract*GEOCON*poldis*natpride"

The component coms from function superSubset() has similar complex column
names from the resulting (necessary) expressions:

sus <- superSubset(LF, outcome = "SURV", incl.cut = 0.9, ron.cut = 0.6)
colnames(sus$coms)

[1] "STB" "LIT*STB" "DEV+URB+IND"

In these examples, the component pims contains the set membership scores
for the resulting prime implicants in the conservative solution. One possible
use case is to check if their negation is also sufficient for the outcome:

pof(1 - cCVF$pims, PROTEST, relation = "sufficiency")

inclS PRI covS covU
--
1 democ+ethfract+geocon 0.575 0.362 0.841 0.000
2 ethfract+geocon+poldis 0.508 0.288 0.790 0.000
3 democ+ethfract+poldis+NATPRIDE 0.526 0.334 0.892 0.000
4 democ+geocon+poldis+natpride 0.542 0.351 0.893 0.011
5 DEMOC+ETHFRACT+geocon+POLDIS+NATPRIDE 0.567 0.388 0.945 0.044
--

The resulting rows in the output are equivalent to the negated expressions
from the component pims. Naturally, the same negated expression can be
supplied manually, or directly using the function negate():

pof(negate("DEMOC*ETHFRACT*GEOCON"), PROTEST, data = CVF, relation = "suf")

inclS PRI covS covU

1 democ 0.601 0.354 0.564 0.137
2 ethfract 0.614 0.337 0.661 0.210
3 geocon 0.601 0.246 0.317 0.029
4 expression 0.575 0.362 0.841 -

The command from the previous example is unnecessarily complicated, how-
ever. As shown in Chaps. 5 and 6, the function pof() accepts fully contained

11.1 Boolean Expressions 247

string expressions, using the left arrow notation “<=” for necessity and right
arrow “=>” for the sufficiency relation:

pof("~DEMOC + ~ETHFRACT + ~GEOCON => PROTEST", data = CVF)

inclS PRI covS covU

1 ~DEMOC 0.601 0.354 0.564 0.137
2 ~ETHFRACT 0.614 0.337 0.661 0.210
3 ~GEOCON 0.601 0.246 0.317 0.029
4 expression 0.575 0.362 0.841 -

All of these different examples show just how versatile this function is, ac-
cepting almost any type of input that carries or can generate set membership
scores. And there is even more to reveal, its output is an object of class "pof"
that has a dedicated print method.
For instance, the output of the minimization process usually prints the param-
eters of fit for the solution model(s), which usually resides in the component
named IC (inclusion and coverage):

data(LF) # if not already loaded
ttLF <- truthTable(LF, "SURV", incl.cut = 0.7)
cLF <- minimize(ttLF, details = TRUE)
cLF$IC

inclS PRI covS covU
--
1 DEV*urb*LIT*STB 0.809 0.761 0.433 0.196
2 DEV*LIT*IND*STB 0.843 0.821 0.622 0.385
--

M1 0.871 0.851 0.818

Since none of the functions truthTable() and minimize() did not specify show-
ing the cases for each solution term, this is not printed. In this situation, either
rerun the commands with the argument show.cases = TRUE or, perhaps even
more simple, simply ask the printing function itself to show the cases:

print(cLF$IC, show.cases = TRUE)

inclS PRI covS covU cases
--
1 DEV*urb*LIT*STB 0.809 0.761 0.433 0.196 FI,IE; FR,SE
2 DEV*LIT*IND*STB 0.843 0.821 0.622 0.385 FR,SE; BE,CZ,NL,UK
--

M1 0.871 0.851 0.818

248 11 Less Known Features

11.2 Negate Expressions

The discussion about Boolean expressions could not have ended without a
more in-depth discussion about the different ways to negate such expressions.
Previous chapters have already used the function negate() in several places,
but it was always in the context of another topic being introduced, therefore
it never got properly explained.
The structure of the function is rather simple and self-explanatory:

negate(expression, snames = "", noflevels, use.tilde = FALSE)

The first argument is a Boolean expression, and as previously shown it needs
the set names if the causal conditions in the expression are not separated by
formal conjunctive “*” or disjunctive “+” signs. To negate multi-value expres-
sions, it needs to know the number of levels, and all of these arguments are
passed to the underlying function translate() that does the heavy lifting.
Finally, the output expression contains negated expression in either
lower/upper case notation (default) or it can be switched to negating us-
ing a tilde sign “~” in front of the set names.
The negation of Boolean expressions is possible due to Augustus De Morgan,
a British mathematician who lived in the nineteenth century. De Morgan
formulated two laws that have passed the test of time, and are highly used in
formal logics and computer programming:
∼(A + B) = ∼A · ∼B
∼(A · B) = ∼A + ∼B
In plain language, these two laws are translated quite simply as:
• the negation of a disjunction is a conjunction of negations
• the negation of a conjunction is a disjunction of negations
An example of the first law could be: “not(smartphone or tablet)”, which
after negation is easily understood as: “not smartphone and not tablet”.
The second law is a bit more tricky but just as simple, for instance a Boolean
expression such as “not young male” is also understood as “not(young and
male)”, which after negation is finally understood as: “not young or not male”.
It can be older, or female, just not both young and male at the same time.

negate("~(A*B)")

S1: ~(A*B)
N1: ~A + ~B

Boolean expressions are formulated in many ways. Apart from the different
ways to signal a negated causal condition (lower case letters, using a tilde etc.),

11.2 Negate Expressions 249

conjunctions are also often expressed with a star sign “*” but there are situ-
ations, especially when the set names have a single letter, that conjunctions
are expressed by a simple juxtaposition of the letters:

negate("AC + B~C")

S1: AC + B~C
N1: ~C + ~AB

In this example, it is clear for a human there are three sets A, B and C, but
this is far from trivial for a computer program. All functions dealing with
Boolean expressions in package QCA can detect such situations, most of the
times, but it would be a good practice advice to always use a star sign for the
conjunctions, even when it is very clear.
The function negate() does more than interpreting a simple Boolean expres-
sion, it can also detect an object resulting from the minimization process (that
has a class qca). When the input is such an object, it searches through all its
solution components and negates all of them:

data(LC)
pLC <- minimize(truthTable(LC, outcome = "SURV"), include = "?")

negate(pLC)

S1: DEV*STB
N1: dev + stb

It can even detect and negate intermediate solutions, as shown in Sect. 8.8:

data(LF)
ttLF <- truthTable(LF, outcome = "SURV", incl.cut = 0.8)
iLF <- minimize(ttLF, include = "?", dir.exp = "1,1,1,1,1")

negate(iLF)

S1-C1P1-1: DEV*URB*LIT*STB + DEV*LIT*ind*STB
N1-C1P1-1: dev + lit + stb + urb*IND

This output has a specific codification C1P1-1, which means that at the com-
bination between the first (and the only) conservative solution C1 and the
first (and the only) parsimonious solution there is only a single intermediate
solution -1 being generated.
But there are situations with many intermediate solutions, in which case there
will be multiple numbers where -1 is, and all of those for all possible combi-
nations of conservative and parsimonious solutions, which themselves can be
generated in multiple numbers depending on the level of ambiguity found in
the data.

250 11 Less Known Features

11.3 Factorize Expressions

Factorizing a SOP (sum of products) expression leads to what might be seen
as an opposite, POS (product of sums) expression: it finds all possible combi-
nations of common factors in a given expression.
The common factors in a SOP expression, especially when the expression is
about a sufficiency relation, are all INUS conditions. Therefore the need to
factorize an expression is a quest to find those INUS conditions which are
found in as many solution terms as possible, revealing their relative impor-
tance when the outcome is present.
Similar to the negate() function, the conditions in the expression are treated
in alphabetical order, unless otherwise specified using the same argument
called snames:

factorize("one*TWO*four + one*THREE + THREE*four",
snames = "ONE, TWO, THREE, FOUR")

M1: one*TWO*four + one*THREE + THREE*four

F1: one*(THREE + TWO*four) + THREE*four
F2: one*TWO*four + THREE*(one + four)
F3: four*(THREE + one*TWO) + one*THREE

The treatment of SOP expressions is universal across functions, the negation
of individual conditions being signaled either with a lower case letter or using
a tilde:

factorize("~ONE*TWO*~FOUR + ~ONE*THREE + THREE*~FOUR",
snames = "ONE, TWO, THREE, FOUR")

M1: ~ONE*TWO*~FOUR + ~ONE*THREE + THREE*~FOUR

F1: ~ONE*(THREE + TWO*~FOUR) + THREE*~FOUR
F2: ~ONE*TWO*~FOUR + THREE*(~ONE + ~FOUR)
F3: ~FOUR*(THREE + ~ONE*TWO) + ~ONE*THREE

Wherever possible, the input can be transformed into a complete POS ex-
pression, where all common factors are combined with exactly the same other
INUS conditions. It is not always guaranteed that such a POS expression is
possible, but it can be searched by activating the argument pos:

factorize("ac + aD + bc + bD", pos = TRUE)

M1: ac + aD + bc + bD

F1: (a + b)(c + D)

11.3 Factorize Expressions 251

Naturally, such a factorization is possible using a minimization object directly,
in which case it is applied on every model in the output:

data(CVF)
pCVF <- minimize(CVF, outcome = "PROTEST", incl.cut = 0.8,

include = "?", use.letters = TRUE)
factorize(pCVF)

M1: e + a*B*D + A*B*C + A*C*D

F1: A*C*(B + D) + e + a*B*D
F2: B*(a*D + A*C) + e + A*C*D
F3: D*(a*B + A*C) + e + A*B*C

M2: e + a*B*D + A*B*d + A*C*D

F1: A*(B*d + C*D) + e + a*B*D
F2: B*(a*D + A*d) + e + A*C*D
F3: D*(a*B + A*C) + e + A*B*d

M3: e + A*B*C + A*C*D + B*C*D

F1: A*C*(B + D) + e + B*C*D
F2: B*C*(A + D) + e + A*C*D
F3: C*(A*B + A*D + B*D) + e
F4: C*D*(A + B) + e + A*B*C

M4: e + A*B*d + A*C*D + B*C*D

F1: A*(B*d + C*D) + e + B*C*D
F2: B*(A*d + C*D) + e + A*C*D
F3: C*D*(A + B) + e + A*B*d

Finally, the negation of a certain model might be interesting to factorize:

factorize(negate("e + a*B*D + A*B*C + A*C*D"))

M1: A*c*E + a*b*E + b*c*E + b*d*E + a*d*E + c*d*E

F01: E*(A*c + a*b + b*c + b*d + a*d + c*d)
F02: a*E*(b + d) + E*(A*c + b*c + b*d + c*d)
F03: a*E*(b + d) + b*E*(c + d) + c*E*(A + d)
F04: a*E*(b + d) + b*d*E + c*E*(A + b + d)
F05: a*E*(b + d) + c*E*(A + b) + d*E*(b + c)
F06: b*E*(a + c + d) + E*(A*c + a*d + c*d)
F07: a*d*E + b*E*(a + c + d) + c*E*(A + d)
F08: A*c*E + b*E*(a + c + d) + d*E*(a + c)
F09: c*E*(A + b + d) + E*(a*b + b*d + a*d)
F10: a*d*E + b*E*(a + d) + c*E*(A + b + d)
F11: a*b*E + c*E*(A + b + d) + d*E*(b + a)
F12: d*E*(b + a + c) + E*(A*c + a*b + b*c)
F13: A*c*E + b*E*(a + c) + d*E*(b + a + c)
F14: a*b*E + c*E*(A + b) + d*E*(b + a + c)

252 11 Less Known Features

11.4 More Parameters of Fit

The parameters of fit are traditionally revolving around inclusion and coverage
(raw and unique), plus PRI for sufficiency and RoN for necessity. These are
the standard parameters, as far as the current best practices indicate.
But standards are always subject to possible changes. Through sheer test-
ing from the community, special situations can be found where the standard
measures don’t seem to provide all the answers. Haesebrouck (2015), for in-
stance, believes that QCA’s most heavily used parameter of fit—consistency
measure—is significantly flawed, because:

. . . inconsistent cases with small membership scores exert greater bearing on the
consistency score than inconsistent cases with large membership scores. In conse-
quence, the measure does not accurately express the degree to which empirical
evidence supports statements of sufficiency and necessity.

Starting from the classical consistency formula from Eq. (6.3):

inclSX ⇒ Y =
∑

min(X, Y)∑
X (11.1)

Haesebrouck observes that cases with a large membership score in X have a
greater impact on the consistency measure than cases with a low membership
scores in X, even if their inconsistent part is equal: X = 1 and Y = 0.75
versus X = 0.25 and Y = 0. The impact of the inconsistent part (0.25) in the
first situation is lower than the impact of an equal inconsistent part (0.25) in
the second situation. He also observes that membership scores in X can be
redefined by the sum of the consistent plus inconsistent parts:

inclSX ⇒ Y =
∑

min(X, Y)∑
(min(X, Y) + max(X−Y,0)) (11.2)

The consistent part of X is equal to the numerator of the fraction, while the
inconsistent part is either equal to 0 (if X is completely consistent) or equal to
the difference between X and Y, when X is larger than Y. As a consequence, he
proposes to increase the impact of the inconsistent part for higher membership
in X by first multiplying it with the value of X, than taking its square root:

inclHX ⇒ Y =
∑

min(X, Y)
∑

(min(X,Y) +
√
max(X−Y, 0) ·X)

(11.3)

This is a possible improvement over the standard formula, a candidate for a
new standard if there will be enough recognition and usage from the academic
community. However, it is difficult for any new candidate to replace the state
of the art standard, since most software offer only the standard measures.

11.4 More Parameters of Fit 253

For any such situations, the function pof() offers the possibility to add al-
ternative measures via the argument add. It accepts a function, simplistically
defined with two parameters x and y, that returns any sort of inner calculation
based on these two parameters.
The example below defines such a function and assigns it to an object called
inclH. The object is served to the function pof(), which augments the output
with the new function name:

inclH <- function(x, y) {
sum(fuzzyand(x, y)) /
sum(fuzzyand(x, y) + sqrt(fuzzyor(x - y, 0)*x))

}

pof("DEV => SURV", data = LF, add = inclH)

inclS PRI covS covU inclH

1 DEV 0.775 0.743 0.831 - 0.720

If more such functions need to be provided, the argument add also accepts a
list object, containing a function on each component. The names of the com-
ponents will become the names of the new parameters of fit in the augmented
output, trimmed to the first five characters.
While still at the parameters of fit section, for most situations a SOP (sum of
products) expression should be sufficient, when referring to specific column
names from a dataset. This is a rather new improvement of this function,
previously such expressions could also be provided in their matrix equivalent.
For instance, an expression such as DEV·ind + URB·STB could also be writ-
ten in the matrix form:

DS <- matrix(c(1, -1, -1, 0, -1,
-1, 1, -1, -1, 1), ncol = 5, byrow = TRUE)

colnames(DS) <- colnames(LF)[1:5]
DS

DEV URB LIT IND STB
[1,] 1 -1 -1 0 -1
[2,] -1 1 -1 -1 1

This matrix uses a standard value of 1 for the presence of a condition, a value
of 0 for the absence of the condition and a value or −1 if the condition is min-
imized. In this example, since DEV·ind + URB·STB is the only parsimonious
solution for the outcome SURV (at a 0.75 inclusion cut-off), their parameters
of fit can be obtained through this matrix:

254 11 Less Known Features

pof(DS, "SURV", data = LF, relation = "sufficiency")

inclS PRI covS covU

1 DEV*ind 0.815 0.721 0.284 0.194
2 URB*STB 0.874 0.845 0.520 0.430

This is of course equivalent to the direct SOP expression:

pof("DEV*ind + URB*STB => SURV", data = LF)

inclS PRI covS covU

1 DEV*ind 0.815 0.721 0.284 0.194
2 URB*STB 0.874 0.845 0.520 0.430
3 expression 0.850 0.819 0.714 -

As mentioned in Sect. 11.1, functions minimize() and superSubset() generate
in their output components named pims (prime implicants membership scores)
and coms (component membership scores), that can be used as input for the
parameters of fit.

psLF <- minimize(LF, outcome = "SURV", include = "?", incl.cut = 0.75)
head(psLF$pims)

DEV*ind URB*STB
AU 0.27 0.12
BE 0.00 0.89
CZ 0.10 0.91
EE 0.16 0.07
FI 0.58 0.03
FR 0.19 0.03

These are the membership scores in the sets defined by the prime implicants
DEV·ind and URB·STB, which can be verified using the function compute():

compute("DEV*ind", data = LF)

[1] 0.27 0.00 0.10 0.16 0.58 0.19 0.04 0.04 0.07 0.72 0.34 0.06 0.02
[14] 0.01 0.01 0.03 0.33 0.00

The component pims from the output of the function minimize() can be used
to calculate parameters of fit directly, with the same results:

pof(psLF$pims, LF$SURV, relation = "sufficiency")

inclS PRI covS covU

1 DEV*ind 0.815 0.721 0.284 0.194
2 URB*STB 0.874 0.845 0.520 0.430

11.5 XY Plots 255

11.5 XY Plots

An XY plot is a scatterplot between two objects measured in fuzzy sets. It is
a visualization tool to inspect to what extent one set is a subset of the other,
in order to assess the sufficiency and/or necessity of one set to the other.
There are multiple ways of obtaining such a plot, but the most straightforward
way is to use the function XYplot() from package QCA. It has the simplest
possible structure of arguments, but most importantly it offers all the flexi-
bility and the wealthy choice of parameters from the native function plot(),
including all graphical parameters that are available via ?par.
The function has the following structure:

XYplot(x, y, data, relation = "sufficiency", mguides = TRUE,
jitter = FALSE, clabels = NULL, enhance = FALSE, model = FALSE, ...)

Similar to all other functions in this package, it has a set of default values but
the only one that has a visible effect is the relational argument, calculating the
parameters of fit for the sufficiency relation. The total number of parameters
is kept to a minimum, and most of them are deactivated by default (not
jittering the points with the argument jitter, not enhancing XY plot via the
argument enhanced, etc.).
The argument mguides adds two lines (a horizontal and a vertical one) through
the middle of the XY plot, allowing to divide the plot region into four areas
corresponding to a 2 × 2 cross-table. This is a very useful way to visualize
where the fuzzy coordinates of the points would be located into the binary
crisp cells of a table.
The two main arguments for this function are x and y, and they accept a
variety of things as possible inputs. The most straightforward interpretation
of these arguments are two numerical vectors containing fuzzy values between
0 and 1. The first (x) is going to be used for the horizontal axis, and the
second (y) for the vertical axis.
For a first exemplification, we are going to use the same dataset CVF that
was already loaded in Sect. 11.1. The outcome of this data is called PROTEST
(more exactly ethnopolitical protest), and we might be interested which of
the causal conditions might be sufficient. A first to draw the attention is
called NATPRIDE (national pride), with the following plausible hypothesis:
the absence of the national pride is a sufficient condition for ethnic protests.
This hypothesis could be visualized with the following command:

XYplot(1 - CVF$NATPRIDE, CVF$PROTEST)

256 11 Less Known Features

As it can be seen in Fig. 11.1, most of the points are located in the upper left
part of the plot, indicating sufficiency.This is confirmed by a relatively high

Fig. 11.1 Fuzzy relation between the absence of national pride and ethnic protest

inclusion score of 0.899 reported right below the “Sufficiency relation” title,
with a similar high PRI score of 0.807, both confirming that an absence of
national pride is indeed associated with ethnopolitical protests.
However, it cannot be concluded this is a causal relationship because the
coverage is rather small (0.597) which means that although clearly sufficient,
the absence of national pride is not a necessary condition for the appearance
of ethnopolitical protests.
Returning to the command, the condition NATPRIDE was negated by sub-
traction from 1 (as usual in fuzzy sets), and this always works when the input
is already represented by numerical vectors. But the same result would have
been obtained with the following (unevaluated) command:

XYplot(1 - NATPRIDE, PROTEST, data = CVF)

In this example, the input for the argument x is not a numerical vector, but
the name of the condition (NATPRIDE), which is to be found in the data
called CVF (hence the need to specify the additional argument data).
Similar to many other functions in package QCA, especially function pof(),
these column names can be provided with or without the double quotes, and

11.5 XY Plots 257

they can be negated using the 1- notation (subtracting the set membership
scores from 1) or using a preceding tilde.

XYplot(~NATPRIDE, PROTEST, data = CVF, jitter = TRUE, cex = 0.7,
clabels = rownames(CVF))

Fig. 11.2 The same XY plot, containing the jittered case labels

Figure 11.2 is an interesting plot for the usage of row names for the case labels
added to the plot. A bit off-topic, but this is an example of how not to use
the row names. Where possible (and most of the QCA data refer to countries
as cases) the best approach is to use a two letters abbreviation of each case
and explain somewhere in the help file what each abbreviation stands for.
For countries, this is rather easy because there are already established stan-
dards for the two letter names of the countries. But even here that would have
been possible, for instance using CB instead of CroatsBosnia. The net effect
of using very long names is their likely overlap, especially in datasets with a
large number of cases. The argument jitter adds some random noise to the
position of each point, to avoid a complete overlap (especially when the values
are very close), but it doesn’t completely solve the problem.
As the case labels in this plot are very long and very dense, perhaps a better
approach is to use the row numbers as case identifiers. This is the purpose
of the argument clabels, which can be a vector of case labels with the same
length as the numeric vectors specified via argument x and y. Alternatively, it

258 11 Less Known Features

can be a logical vector of the same length as the number of rows in the data,
to add only those labels where the vector has a true value (Fig. 11.3).

XYplot(~NATPRIDE, PROTEST, data = CVF, clabels = seq(nrow(CVF)))

Fig. 11.3 The XY plot using numbers as case identifiers

For this plot, the argument clabels has been supplied with a vector of row
numbers instead of country names, to avoid overlapping labels especially for
very close points. R has a native, base function called jitter() which in turn
has two additional parameters called factor and amount to control how much
the points are randomly jittered. These arguments are not part of the formal
arguments in the function XYplot() but they can still be used because they
are automatically captured and interpreted via the three dots ... argument.
This argument with three dots ... is a special one, among others it can be
used to access all graphical parameters from the native plot function. The
most useful, to give just a few examples, are: col to add specific colors to the
points, bg to fill the points with specific colors, pch (point character) to plot
the points using different other signs like squares, triangles or diamonds, cex
(character expansion, defaulted to 0.8) to control the size of the points and
their associated labels etc.
Figure 11.4 is such an example, that mimics the enhanced plot presented by
Schneider and Rohlfing (2016), to aid with process tracing by using different

11.5 XY Plots 259

character points for the various quadrants of the plot. The input, to demon-
strate a complete range of possibilities for this function, is a SOP expression:

XYplot("~NATPRIDE => PROTEST", data = CVF, enhance = TRUE, jitter = TRUE)

Fig. 11.4 The enhanced XY plot

The choice of point characters is very close to the description from the original
paper by Schneider and Rohlfing:
• the dark filled points in zone 1 (upper right quadrant, above the diagonal)

indicate the typical cases
• the cross, also in zone 1 indicate the most typical case (closest to the main

diagonal)
• the light filled points in zone 2 (upper right quadrant, below the diagonal)

indicate the deviant cases consistency in degree
• there are no deviant cases consistency in kind to show in zone 3 (lower

right quadrant), otherwise they would have a diamond shape
• the triangles in zone 4 (entire lower left quadrant) indicate the individually

irrelevant cases
• the squares in zone 5 (upper left quadrant) indicate the deviant cases cov-

erage
By default, the enhanced plot only displays the labels for the typical and for
the deviant cases consistency in degree (zones 1 and 2), a specific choice for
the sufficiency relation. When the expression is the result of a minimization

260 11 Less Known Features

process, however, the advice is add the labels for the points in zones 4 and 5,
where the expression has a set membership score below 0.5 (Fig. 11.5).

sol <- "natpride + DEMOC*GEOCON*POLDIS + DEMOC*ETHFRACT*GEOCON"
XYplot(sol, "PROTEST", data = CVF, enhance = TRUE, model = TRUE)

Fig. 11.5 An enhanced solution model

For this purpose, the function XYplot() has another logical argument called
model, which produces effects only when the enhance argument is activated.
The XY plot above corresponds to one of the parsimonious solutions in the
CVF data, using an inclusion cut-off value of 0.85 to construct the truth table.
Activating the argument model is only necessary when the input is an expres-
sion, but otherwise the function XYplot() accepts entire objects containing
the result of a minimization. For instance, since there are two parsimonious
solutions, the same output could have been obtained by using this equivalent
command:

ttCVF <- truthTable(CVF, "PROTEST", incl.cut = 0.85)
pCVF <- minimize(ttCVF, include = "?")
XYplot(pCVF$solution[1], "PROTEST", data = CVF, enhance = TRUE)

In this command, the function XYplot() automatically detects the input is
a solution model (from the containing object pCVF), so there is no need to
specifically switch model = TRUE to produce the same figure as above. For
the second solution, only the number between the square brackets must be
changed: [2]. For the intermediate solutions, the minimization object has a

11.5 XY Plots 261

component called i.sol which contains all combinations of conservative and
parsimonious solutions (ex. C1P1), each containing the solutions.
All these figures have been produced using predefined settings, but otherwise
users are free to create their own choice of points, or which cases from which
zones to be labeled. In this direction, it is perhaps worth reminding that
argument clabels also accepts a logical vector of the same length as the
number of rows in the data. In this scenario, the XY plot will print the case
labels only for those row names where the argument clabels has a true value,
thus having a direct command over which points should be labeled.
When the argument clabels is logical, the case labels for the points will be
taken from the row names of the data (if provided), or otherwise an automatic
sequence of case numbers will be produced. This is clearly a manual operation
(different from the above automatic settings), but on the other hand it gives
full flexibility over all possible choices with respect to the plot. Below is a
possible final example of an XY plot, using all features (Fig. 11.6):

sol <- compute(sol, data = CVF) # turn expression to set membership scores
col <- rep("darkgreen", nrow(CVF)) # define a vector of colors
col[sol < 0.5 & CVF$PROTEST < 0.5] <- "red" # zone 4
col[sol < 0.5 & CVF$PROTEST >= 0.5] <- "blue" # zone 5
clabels <- logical(nrow(CVF))
clabels[c(2, 5, 11)] <- TRUE # only these three labels to print
XYplot(sol, "PROTEST", data = CVF, enhance = TRUE, clabels = clabels,

col = col, bg = col, xlab = "Solution model")

Fig. 11.6 A highly customized XY plot

262 11 Less Known Features

Naturally, the graphical user interface has a dedicated menu to construct such
diagrams:

Graphs/XY Plots
The dialog is less sophisticated, compared to the written command (especially
with respect to the very latest enhancements), but on the other hand it com-
pensates with much more interactivity. Figure 11.7 shows all possibilities, from
negating conditions and outcome with a single click, changing the relationship
using the dedicated radio button below the outcome selection box, to jittering
points and rotating their labels to improve visibility.
In the default set up, the points are not labeled but respond with a label upon
a mouse over (the point) event. The entire dialog is designed for a quick look
over the possible set relations between one condition and one outcome (from
the same dataset), with their associated parameters of fit.
Future versions of the dialog should include selecting minimization objects
(not just dataframes), and of course enhance the plot to enable process tracing.
It is also a possible idea to provide an export button to either SVG, or a bitmap
version (PNG, BMP among others) or even the most portable, a PDF version
of the plot.

LC
LF
LM

DEV
URB
LIT

LIT

SURV
STB

Dataset:

Condition X:

Outcome Y:

negate

negate

sufficiency

necessity

parameters of fit

show middle guides

fill jitter points

show case labels

Inclusion: 0.771 Coverage: 0.539 PRI: 0.720

rotate 0

1

0.1

0.9

0.2

0.8

0.3

0.7

0.4

0.6

0.5

0.5

URB

SU
RV

0.6

0.4

0.7

0.3

0.8

0.2

0.9

0.1

1
0

AU

BE

CZ

EE

FI

FR

DEGR

HU

IE

IT

NL

PL

PT

RO

ES

SE
UK

IND

IND

XY plot

Fig. 11.7 The XY plot dialog in the graphical user interface

11.6 Venn Diagrams 263

11.6 Venn Diagrams

The Venn diagrams are another type of useful visualization tools, particularly
useful for the truth table analysis. As it turns out, there are exactly as many
intersections in a Venn diagram as the number of rows in a truth table.
This is by no means a coincidence, since both truth table and Venn diagrams
gravitate around the same number 2k, where k is the number of causal con-
ditions. Figure 11.8 is the most simple example, with two sets and 22 = 4
intersections.
It should be stated, however, that truth tables can have more than 2k rows
when at least one of the causal conditions has more than two levels, therefore
truth tables can be visualized with a Venn diagram only for binary crisp sets
or fuzzy sets (in the latter case, the fuzzy values are transformed to binary
crisp values anyways).
There are many possibilities to draw Venn diagrams in R, using various func-
tions from packages gplots, eVenn, Vennerable and probably one of the
best, package VennDiagram. An overview of such possibilities was once
written by Murdoch (2004), but things have changed a lot in the mean time.
A more recent presentation was written by Wilkinson (2011).
This section is going to introduce a different package with the same name,
called venn version 1.5 (Dus,a 2017). Perhaps confusingly, it has exactly the
same name as the one written and described by Murdoch, but his version was
either not submitted to CRAN (the official R package repository), or it was
abandoned and removed many years before this new package appeared.
Either way, the initial attempt by Murdoch could only draw up to three sets,
and more recent packages can deal with up to five sets, while the current
package venn can draw up to seven sets. For up to three sets, the shapes can
be circular, but using circles for more than three sets is not possible. For four
and five sets they shapes can be ellipsoidal, but the default shapes are even
better, while for more than five sets the shapes cannot be continuous (they
might be monotone, but not continuous). The seven sets diagram is called
“Adelaide” (Ruskey and Weston 2005).
To complete the presentation of available R packages, it is worth mentioning
venneuler and eulerr that facilitate drawing not only Venn but also Eu-
ler diagrams. While the Venn diagrams always have 2k intersections, Euler
diagrams are not bounded to this restriction and can draw sets completely
outside of each other (if there is no intersection between them). Euler dia-
grams are not suitable for QCA research, but one of their interesting features
is to allow for proportional area drawing (larger sets or larger intersections
appearing larger in the plot).

264 11 Less Known Features

library(venn)
venn(2, ilabels = TRUE)

Fig. 11.8 A simple Venn diagram with two sets

The complete syntax for the function venn() is presented below:

venn(x, snames = "", ilabels = FALSE, counts = FALSE, ellipse = FALSE,
zcolor = "bw", opacity = 0.3, size = 15, cexil = 0.6, cexsn=0.85, ...)

There are a number of arguments to describe, one of them being already used
above. ilabels stands for intersection labels, and adds a unique number to
each intersection, for instance 12 means the intersection between the first and
the second sets, number 1 means what is unique to the first set and number 0
means what is outside all sets. When a four set diagram is going to be drawn,
the intersection of all four sets will have the number 1234.
Unlike the previous approaches to draw Venn diagrams using complicated
mathematical approximations to draw (proportional) intersections between
sets, the package venn employs a static approach. All intersections between
all combinations of up to seven sets are pre calculated and available with the
package as a dataset containing x and y coordinates for each point that define
a particular shape. This makes the drawing extremely fast, with the added
advantage the predefined shapes maximize the area of each intersection to the
largest extent possible.
The first argument x can be many things, but most importantly (and similar
to the sibling package QCA) it can be a SOP—sum of products—expression,
where intersections (conjunctions) are indicated with an asterisk “*” sign,

11.6 Venn Diagrams 265

while unions (disjunctions) are indicated with a plus “+” sign. For this rea-
son, it should be combined with the argument snames to determine the total
number of sets (and their order) to be drawn in the diagram.
Like all Venn diagrams functions, venn() can also use colors to highlight cer-
tain intersections, and even use transparencies to show when two areas overlap
(the default value of the argument opacity is 0.3, where more opacity means
less transparency). An example could be the union of two sets A and B, from
a universe containing four sets (Fig. 11.9):

venn("A + B", snames = "A, B, C, D", ilabels = TRUE)

Fig. 11.9 Intersection of A and B out of four sets

The predefined color of the union can be changed using the argument zcolor
(zone color). It is less about an intersection color, but a “zone” because in
the example above the union of A and B contains multiple possible unique
intersections, and the entire zone is the union of all these unique shapes.
The predefined value of the zcolor argument is "bw" (black and white), when
no expression is given and only the shapes of the sets are drawn, as in Fig. 11.8.
While color accepts a vector of color with the same length as the total
number of sets, it has yet another predefined value called "style", which
uses a set of unique and distinct colors generated by the excellent function
colorRampPalette() from package grDevices.
For four and five sets, there are alternative ellipsoidal shapes that are produced
by activating the argument elipse, but from six set onwards the shapes are
monotone, but not continuous.

266 11 Less Known Features

Although sets are usually understood as causal conditions in QCA (each col-
umn from a dataframe representing a set), the function venn() also accepts
lists with unequal number of elements. Each set is represented by a list com-
ponent, and the task is to calculate all possible intersections where the sets
have common elements, a quite normal scenario in bioinformatics. A possible
example is (Fig. 11.10):

set.seed(12345)
x <- list(First = 1:20, Second = 10:30, Third = sort(sample(25:50, 15)))
x

$First
[1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

$Second
[1] 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

$Third
[1] 25 27 28 29 31 34 35 38 40 41 43 45 46 49 50

venn(x) # argument counts is automatically activated

Fig. 11.10 Number of common elements in each intersection

When the input is a list, the function invisibly returns (not printed on the
screen but could be assigned to an object) the truth table and the counts
for each intersection, with an attribute called “intersections” containing their
elements. There are 11 common elements between the First and the Second set,
and 4 elements between the Second and the Third set. No common elements
exist between all three sets and the number 0 is not printed in such situations

11.6 Venn Diagrams 267

to make a difference from the value 0 from the argument ilabels (which
means elements outside all sets).
The counts for each intersection (similar to the intersection labels) have a
default, small font size, despite the large space available. That is necessary
to have a uniform font size for all possible intersections, large and small. The
more sets are added to the diagram, the smaller the intersections become.
But this is not a restriction, since users can manually change the size of these
labels using the argument cexil, a combination from the default cex argument
from the base package, with il standing for intersection labels. There is also
another related argument called cexsn, to adjust the font size for the set names.
The base cex argument is used to control the width of the set border lines.
Similar to function XYplot() presented in the previous section, the function
venn() has a final three dots ... parameter to allow the usage of all other
graphical parameters from the base plot functions. For instance, one could
customize a plot by changing the line type via the parameter lty, as well as
its color via the parameter col (Fig. 11.11):

venn(5, lty = 5, col = "navyblue", ilabels = TRUE)

Fig. 11.11 Custom Venn diagram with five sets

This is one of the best shapes that accommodates five sets into a single dia-
gram. It is also possible to use an ellipse as a base shape, obtaining some of
the intersections very small in size, while some are very large. The light bulb
shape is unique and currently offered only by package venn, enlarging the
size of all intersections to the maximum extent possible.

268 11 Less Known Features

All of these diagrams look very nice, but the most important feature of the
function venn() is its ability to recognize a truth table object and plot all of its
intersections according to the output value. Using the object ttCVF produced
in the previous section (a truth table on the CVF data, using a 0.85 inclusion
cut-off), the command to plot this object is as simple as:

venn(ttCVF, counts = TRUE, opacity = ttCVFttincl)

Fig. 11.12 Venn diagram for the CVF truth table

When plotting a truth table, the choice of colors is fixed, to have an easily
recognizable standard of the colors associated with the positive output con-
figurations (green), negative output configurations (orange), contradictions
(blue) and the rest of the intersections with no empirical evidence (remain-
ders, white). The legend explaining these colors is drawn at the bottom.
The argument opacity is optional, but it can use the inclusion scores for each
configuration to draw the colors, which means a high inclusion turns the color
for a particular intersection more opaque (less transparent). This means of
course that positive output configurations will always be more opaque, and
more significant differences are noticeable only between the yellow intersec-
tions for the negative output configurations, where the range of inclusion
scores is larger.
In Fig. 11.12, many of the intersections from set NATPRIDE are associated
with the negative output, while many of the intersections from set GEOCON
are associated with the positive output. In the middle part, there are inter-
sections (configurations) belonging to multiple sets that are associated with
either one of the outputs.

11.6 Venn Diagrams 269

The counts from each intersection represent the number of cases associated
with each intersection, but they are not important when deriving the final
solution. It is the configuration itself, not the number of cases associated with
it, that has a contribution on the final solution(s), as long as the configuration
passes the frequency cut-off. However, this is a useful information to visualize
how the empirical information from the database is distributed in the truth
table configurations. The minimized solutions are:

pCVF <- minimize(ttCVF, include = "?")
pCVF

M1: natpride + DEMOC*GEOCON*POLDIS + (DEMOC*ETHFRACT*GEOCON)
=> PROTEST

M2: natpride + DEMOC*GEOCON*POLDIS + (DEMOC*ETHFRACT*poldis)
=> PROTEST

In a similar vein with the function XYplot(), and consistent with a general
approach in package QCA, the function venn() is built to automatically rec-
ognize a solution if it comes from a minimization object (such as pCVF). As a
consequence, it is not needed to specify the set names because they are taken
directly from the minimization object.

venn(pCVF$solution[1], zcol = "#ffdd77, #bb2020, #1188cc")

In Fig. 11.13, the first term of the solution (natpride, absence of national
pride, the area outside of the set NATPRIDE) is drawn using a pale green
color, the intersection DEMOC*GEOCON*POLDIS in red and DEMOC*ETHFRACT*GEOCON
in blue. In principle, the information from this diagram confirms the previous
one, where NATPRIDE was mainly associated with a negative output (here,

Fig. 11.13 Venn diagram for the first solution

270 11 Less Known Features

the absence of NATPRIDE is sufficient for the presence of the outcome) and
GEOCON is present in both the other conjunctions from the solution. There
is one particular area where all colors overlap, at the intersection between the
first four sets, and outside the fifth.
In the graphical user interface, a Venn diagram can be produced via the
following menu:

Graphs/Venn Diagram
In the absence of a truth table object, this menu will open an empty dialog.
It first starts by looking for such objects in the workspace, and creates a
diagram only if they exist (from the truth table dialog, the option Assign has
to be checked, with a suitable name). If multiple such objects exist, the Venn
diagram will be drawn for the latest one. It is also worth mentioning that
truth tables are also produced automatically by the minimization function
(objects of class "qca" contain truth table objects of class "tt"), therefore
they all count for the Venn diagram dialog.

Venn diagram

DEMOC

ETHFRACT

GEOCON

POLDIS

NATPRIDE

0 1 C ?

custom

AlbaniansFYROM

Fig. 11.14 The Venn diagram dialog in the graphical user interface

11.7 Custom Labels 271

Figure 11.14 above is very similar to the previous Fig. 11.12, just produced in
the graphical user interface. It has the intersection labels instead of the counts,
but the most important difference is the ability to interactively explore what
cases are associated with each intersection. On hovering the mouse over the
intersections, an event is triggered to show a message containing the names of
each associated cases. Such an event is naturally impossible in the normal R
graphical window, and demonstrates the complementary features that HTML
based, Javascript events can bring to enhance the experience of normal R
graphics.
The particular region that is hovered, at the intersection between the first
four sets, is also the intersection where all three terms from the first solution
overlap in Fig. 11.13. Perhaps interesting is the case associated with this in-
tersection (AlbaniansFYROM), which is the same case identified as the most
typical case in the enhanced XY plot from Fig. 11.4. Further research is needed
to confirm if this is a fact or just a coincidence, but the information seems to
converge.

11.7 Custom Labels

The function venn() has a predefined set of labels for the intersections, ei-
ther as numbers representing the sets to which an intersection belongs to, or
counting how many cases belong to a certain intersection (configuration).
There are however situations when users need to add custom labels to various
intersections, either with the names of the cases belonging to a specific config-
uration, or any other text description. In order to do that, it is important to
understand the conceptual difference between an intersection, a “zone”, and
an “area”.
A zone is a union of set intersections. If a zone contains all intersections from
a particular set, the zone would be equivalent to the set itself. For instance
in Fig. 11.8, the set A has two intersections: Ab (what is inside of A but not in
B), and AB (the intersection between A and B). We could also say the set A is
the union between Ab and AB (in other words, Ab + AB = A).
An area can have one or multiple zones, depending on the complexity of the
Venn diagram, with more sets increasing the complexity. For instance there
are four sets in Fig. 11.9, and the area Bc (what is inside B but not in C), has
two zones: the first consists from the intersections 2 and 12 (aBcd + ABcd),
and the second zone with the intersections 24 and 124 (aBcD + ABcD). This
happens because the set B is transversally sectioned by the set C. An area can
also be specified by an entire solution, which by definition has multiple zones,
for each solution term.

272 11 Less Known Features

Figure 11.13 could be improved by adding a label containing the cases for the
solution term DEMOC*ETHFRACT*GEOCON, which is the second term from the first
solution of the object pCVF. Such a label should be located in the diagram
using a set of coordinates for the X and Y axes, therefore we need to calculate
these coordinates:

coords <- unlist(getCentroid(getZones(pCVF$solution[[1]][2])))

This is facilitated by the function getCentroid() from package venn, which re-
turns a list of coordinates for each zone determined by the function getZones().
In this example, there is a single zone for this particular solution term, and
the result is unlisted to obtain a vector of two numbers for the coordinates.
From the inclusion and coverage scores table, we can see the cases associated
with this term: "HungariansRom", "CatholicsNIreland", "AlbaniansFYROM" and
"RussiansEstonia". Having the coordinates of the centroid, adding the label
is now a simple matter of:

venn(pCVF$solution[1], zcol = "#ffdd77, #bb2020, #1188cc")
cases <- paste(c("HungariansRom", "CatholicsNIreland", "AlbaniansFYROM",

"RussiansEstonia"), collapse = "\n")
text(coords[1], coords[2], labels = cases, cex = 0.85)

The specification of collapse = "\n" in function paste() above makes sure
that all four cases are printed below each other (the string "\n" is inter-
preted similarly to pressing the Enter key after each case name). The argument
cex adjusts the font size of the text in the label, according to circumstances
(Fig. 11.15).

Fig. 11.15 Custom labels for a solution term

References

Aiton EJ (1985) Leibniz: a biography. Hilger, London
Ambuehl M, Baumgartner M (2017) CNA: causal modeling with coinci-
dence analysis. R package version 2.0.0. https://CRAN.R-project.org/
package=cna

Barrenechea R, Mahoney J (2017) A set-theoretic approach to
Bayesian process tracing. Sociol Methods Res. https://doi.org/10.1177/
0049124117701489

Baumgartner M (2009) Inferring causal complexity. Sociol Methods Res
38(1):71–101. https://doi.org/10.1177/0049124109339369

Baumgartner M (2013) Detecting causal chains in small-n data. Field Methods
25(1):3–24. https://doi.org/10.1177/1525822X12462527

Baumgartner M (2015) Parsimony and causality. Qual Quant 49:839–856.
https://doi.org/10.1007/s11135-014-0026-7

Baumgartner M, Thiem A (2017) Often trusted but never (properly) tested:
evaluating qualitative comparative analysis. Sociol Methods Res. https://
doi.org/10.1007/s11229-008-9348-0

Bennett B (2012) Logically fallacious. The ultimate collection of over 300 log-
ical fallacies. eBookit.com, Sudbury. https://www.logicallyfallacious.com

Berg-Schlosser D (2012) Mixed methods in comparative politics: principles
and applications. Palgrave Macmillan, Basingstoke

Bogin B (1998) The tall and the short of it. Discover 19(2):40–44
Bolton-Smith C, Woodward M, Tunstall-Pedo H, Morrison C (2000) Accuracy
of the estimated prevalence of obesity from self reported height and weight
in an adult Scottish population. J Epidemiol Community Health 54:143–148

Boole G (1854) An investigation of the laws of thought. Walton & Maberly,
London. Available online, April 2017: http://www.gutenberg.org/files/
15114/15114-pdf.pdf

Borkowski L (ed) (1970) Jan Łukasiewicz: selected works. North Holland,
Amsterdam

© Springer International Publishing AG, part of Springer Nature 2019
A. Dus,a, QCA with R, https://doi.org/10.1007/978-3-319-75668-4

273

https://CRAN.R-project.org/package=cna
https://CRAN.R-project.org/package=cna
https://doi.org/10.1177/0049124117701489
https://doi.org/10.1177/0049124117701489
https://doi.org/10.1177/0049124109339369
https://doi.org/10.1177/1525822X12462527
https://doi.org/10.1007/s11135-014-0026-7
https://doi.org/10.1007/s11229-008-9348-0
https://doi.org/10.1007/s11229-008-9348-0
https://www.logicallyfallacious.com
http://www.gutenberg.org/files/15114/15114-pdf.pdf
http://www.gutenberg.org/files/15114/15114-pdf.pdf
https://doi.org/10.1007/978-3-319-75668-4

274 References

Braumoeller B (2015a) QCAfalsePositive: tests for type I error in qualita-
tive comparative analysis (QCA). R package version 1.1.1. https://CRAN.
R-project.org/package=QCAfalsePositive

Braumoeller BF (2015b) Guarding against false positives in qualitative com-
parative analysis. Polit Anal 23(4):471–487. https://doi.org/10.1093/pan/
mpv017

Braumoeller B, Goertz G (2000) The methodology of necessary conditions.
Am J Polit Sci 44(4):844–858. https://doi.org/10.2307/2669285

Caren N, Panofsky A (2005) TQCA. A technique for adding temporality
to qualitative comparative analysis. Sociol Methods Res 34(2):147–172.
https://doi.org/10.1177/0049124105277197

Cebotari V, Vink MP (2013) A configurational analysis of ethnic protest in
Europe. Int J Comp Sociol 54(4):298–324

Cheli B, Lemmi A (1995) A “totally” fuzzy and relative approach to the
multidimensional analysis of poverty. Econ Notes 1:115–134

Cronqvist L, Berg-Schlosser D (2009) Multi-value QCA (mvQCA). In: Rihoux
B, Ragin C (eds) Configurational comparative methods: qualitative compar-
ative analysis (QCA) and related techniques. Sage, London, pp 69–86

Dalgaard P (2008) Introductory statistics with R, 2nd edn. Springer,
New York

Dauben JW (1979) Georg cantor. His mathematics and philosophy of the
infinite. Princeton University Press, Princeton

De Meur G, Rihoux B, Yamasaki S (2009) Addressing the critiques of QCA.
In: Rihoux B, Ragin C (eds) Configurational comparative methods: quali-
tative comparative analysis (QCA) and related techniques. Sage, London,
pp 147–165

Dus,a A (2007) Enhancing Quine-McCluskey. COMPASSS Working Paper.
http://www.compasss.org/wpseries/Dusa2007b.pdf

Dus,a A (2010) A mathematical approach to the Boolean minimization prob-
lem. Qual Quant 44:99–113. https://doi.org/10.1007/s11135-008-9183-x

Dus,a A (2017) Venn: draw venn diagrams. R package version 1.5. https://
CRAN.R-project.org/package=venn

Dus,a A, Thiem A (2015) Enhancing the minimization of Boolean and multi-
value output functions with eQMC. J Math Sociol 39:92–108. https://doi.
org/10.1080/0022250X.2014.897949

Emmenegger P, Schraff D, Walter A (2014) QCA, the truth table analysis
and large-N survey data: the benefits of calibration and the importance of
robustness tests. COMPASSS Working Paper. http://www.compasss.org/
wpseries/EmmeneggerSchraffWalter2014.pdf

Fox J (2005) The R commander: a basic statistics graphical user interface to
R. J Stat Softw 14(9):1–42. http://www.jstatsoft.org/v14/i09

Garcia-Castro R, Ariño MA (2016) A general approach to panel data set-
theoretic research. J Adv Manag Sci Inf Syst 2:63–76

Gibson BC, Burrel V (2017) braQCA: bootstrapped robustness assessment for
qualitative comparative analysis. R package version 0.9.9.6. https://CRAN.
R-project.org/package=braQCA

https://CRAN.R-project.org/package=QCAfalsePositive
https://CRAN.R-project.org/package=QCAfalsePositive
https://doi.org/10.1093/pan/mpv017
https://doi.org/10.1093/pan/mpv017
https://doi.org/10.2307/2669285
https://doi.org/10.1177/0049124105277197
http://www.compasss.org/wpseries/Dusa2007b.pdf
https://doi.org/10.1007/s11135-008-9183-x
https://CRAN.R-project.org/package=venn
https://CRAN.R-project.org/package=venn
https://doi.org/10.1080/0022250X.2014.897949
https://doi.org/10.1080/0022250X.2014.897949
http://www.compasss.org/wpseries/EmmeneggerSchraffWalter2014.pdf
http://www.compasss.org/wpseries/EmmeneggerSchraffWalter2014.pdf
http://www.jstatsoft.org/v14/i09
https://CRAN.R-project.org/package=braQCA
https://CRAN.R-project.org/package=braQCA

References 275

Goertz G (2003) Cause, correlation and necessary conditions. In: Goertz G,
Starr H (eds) Necessary conditions: theory, methodology, and applications.
Rowman & Littlefield, Lanham, pp 47–64

Goertz G (2006a) Assessing the trivialness, relevance, and relative importance
of necessary or sufficient conditions in social science. Stud Comp Int Dev
41(2):88–109. https://doi.org/10.1007/BF02686312

Goertz G (2006b) Social science concepts. A user’s guide. Princeton University
Press, Princeton

Haesebrouck T (2015) Pitfalls in QCA’s consistency measure. J Comp Polit
2:65–80. Handle: 1854/LU-6834276

Hak T, Jaspers F, Dul J (2013) The analysis of temporarily ordered config-
urations: challenges and solutions. In: Fiss PC, Cambré B, Marx A (eds)
Configurational theory and methods in organizational research. Emerald
Group Publishing, Bingley, pp 107–127

Hino A (2009) Time-series QCA: studying temporal change through Boolean
analysis. Sociol Theory Methods 24(2):247–265

Hug S (2013) Qualitative comparative analysis: how inductive use and mea-
surement error lead to problematic inference. Polit Anal 21(2):252–265.
https://doi.org/10.1093/pan/mps061

Hume D (1999) An enquiry concerning human understanding. In: Beauchamp
T (ed) Oxford philosophical texts. Oxford University Press, Oxford

King G, Keohane RO, Verba S (1994) Designing social inquiry. Scientific in-
ference in qualitative research. Princeton University Press, Princeton

Krogslund C, Choi DD, Poertner M (2015) Fuzzy sets on shaky ground: pa-
rameter sensitivity and confirmation bias in fsQCA. Polit Anal 23(1):21–41.
https://doi.org/10.1093/pan/mpu016

Krook ML (2010) Women’s representation in parliament: a qualitative com-
parative analysis. Polit Stud 58(5):886–908

Lazarsfeld P (1937) Some remarks on typological procedures in social research.
Z Sozial 6:1–24. Available on July 2017: http://dspace.gipe.ac.in/xmlui/
handle/10973/33569

Lipset MS (1959) Some social requisites of democracy: economic development
and political legitimacy. Am Polit Sci Rev 53(1):69–105

Lucas SR (2014) Rejoinder: taking heat and giving light–reflections on the
early reception of “qualitative comparative analysis in critical perspective”.
Sociol Methodol 44(1):127–158. https://doi.org/10.1177/0081175014544105

Lucas SR, Szatrowski A (2014) Qualitative comparative analysis in crit-
ical perspective. Sociol Methodol 44(1):1–79. https://doi.org/10.1177/
0081175014532763

Mahoney J, Kimball E, Koivu KL (2009) The logic of historical explanation
in the social sciences. Comp Polit Stud 42(1):114–146. https://doi.org/10.
1177/0010414008325433

Marx A, Dus,a A (2011) Crisp-set qualitative comparative analysis
(csQCA), contradictions and consistency benchmarks for model specifica-
tion. Methodol Innov Online 6(2):103–148. https://doi.org/10.4256/mio.
2010.0037

https://doi.org/10.1007/BF02686312
https://doi.org/10.1093/pan/mps061
https://doi.org/10.1093/pan/mpu016
http://dspace.gipe.ac.in/xmlui/handle/10973/33569
http://dspace.gipe.ac.in/xmlui/handle/10973/33569
https://doi.org/10.1177/0081175014544105
https://doi.org/10.1177/0081175014532763
https://doi.org/10.1177/0081175014532763
https://doi.org/10.1177/0010414008325433
https://doi.org/10.1177/0010414008325433
https://doi.org/10.4256/mio.2010.0037
https://doi.org/10.4256/mio.2010.0037

276 References

Marx A, Rihoux B, Ragin C (2014) The origins, development, and applica-
tion of qualitative comparative analysis: the first 25 years. Eur Polit Sci
Rev 6(1):115–142. https://doi.org/10.1017/S1755773912000318

McCluskey EJ (1956) Minimization of Boolean functions. Bell Syst Tech J
5:1417–1444

Medzihorsky J, Oana IE, Quaranta M, Schneider CQ (2017) SetMethods:
functions for set-theoretic multi-method research and advanced QCA. R
package version 2.1. https://CRAN.R-project.org/package=SetMethods

Murdoch DJ (2004) Venn diagrams in R. J Stat Softw 11(1):1–3. https://doi.
org/10.18637/jss.v011.c01, https://www.jstatsoft.org/v011/c01

Murrell P (2006) R graphics. Chapmann & Hall, Boca Raton
Neuman LW (2003) Social research methods: qualitative and quantitative
approaches, 5th edn. Allyn Bacon, Boston

Persico N, Postlewaite A, Silverman D (2004) The effect of adolescent expe-
rience on labor market outcomes: the case of height. J Polit Econ 112(5):
1019–1053

Quine WVO (1952) The problem of simplifying truth functions. Am Math
Mon 59(8):521–531

Quine WVO (1955) A way to simplify truth functions. Am Math Mon
62(9):627–631

Ragin C (1987) The comparative method. Moving beyond qualitative and
quantitative strategies. University of California Press, Berkeley

Ragin C (2000) Fuzzy set social science. University of Chicago Press, Chicago
Ragin C (2005) From fuzzy sets to crisp truth tables. COMPASSS Working
Paper. http://www.compasss.org/wpseries/Ragin2004.pdf

Ragin C (2006) User’s guide to fuzzy-set/qualitative comparative analysis 2.0.
Tucson, Arizona

Ragin C (2008a) Measurement versus calibration: a set theoretic approach.
In: Box-Steffensmeier J, Brady HE, Collier D (eds) The Oxford handbook
of political methodology. Oxford University Press, Oxford, pp 174–198

Ragin C (2008b) Redesigning social inquiry. Fuzzy sets and beyond. University
of Chicago Press, Chicago

Ragin C (2014) Lucas and Szatrowski in critical perspective. Sociol Methodol
44(1):80–94. https://doi.org/10.1177/0081175014542081

Ragin C, Rihoux B (2004) Qualitative comparative analysis (QCA): state of
the art and prospects. Qual Methods 2:3–13

Ragin C, Sonnett J (2005) Between complexity and parsimony: limited
diversity, counterfactual cases, and comparative analysis. In: Kropp S,
Minkenberg M (eds) Vergleichen in der Politikwissenschaft. VS Verlag
für Sozialwissenschaften, Wiesbaden, pp 180–197. https://doi.org/10.1007/
978-3-322-80441-9

Ragin C, Sonnett J (2008) Limited diversity and counterfactual cases. In:
Ragin C (ed) Redesigning social inquiry. Fuzzy sets and beyond. University
of Chicago Press, Chicago, pp 147–159

https://doi.org/10.1017/S1755773912000318
https://CRAN.R-project.org/package=SetMethods
https://doi.org/10.18637/jss.v011.c01
https://doi.org/10.18637/jss.v011.c01
https://www.jstatsoft.org/v011/c01
http://www.compasss.org/wpseries/Ragin2004.pdf
https://doi.org/10.1177/0081175014542081
https://doi.org/10.1007/978-3-322-80441-9
https://doi.org/10.1007/978-3-322-80441-9

References 277

Ragin C, Strand SI (2008) Using qualitative comparative analysis to study
causal order. Comment on Caren and Panofsky. Sociol Methods Res
36(4):431–441. https://doi.org/10.1177/0049124107313903

Rihoux B, De Meur G (2009) Crisp-set qualitative comparative analysis
(csQCA). In: Rihoux B, Ragin C (eds) Configurational comparative meth-
ods: qualitative comparative analysis (QCA) and related techniques. Sage,
London, pp 33–68

Royston P, Altman DG (1994) Regression using fractional polynomials of
continuous covariates: parsimonious parametric modelling. J R Stat Soc
Ser C 43(3):429–467

RStudio, Inc. (2013) Easy web applications in R. http://www.rstudio.com/
shiny/

Ruskey F, Weston M (2005) Venn diagrams. Electron J Comb Dyn Surv DS5.
http://www.combinatorics.org/ojs/index.php/eljc/article/view/DS5/html

Sauerbrei W, Royston P (1999) Building multivariable prognostic and diagnos-
tic models: transformation of the predictors by using fractional polynomials.
J R Stat Soc Ser A 162(1):71–94

Schneider CQ, Rohlfing I (2013) Combining QCA and process tracing in
set-theoretic multi-method research. Sociol Methods Res 42(4):559–597.
https://doi.org/10.1177/0049124113481341

Schneider CQ, Rohlfing I (2016) Case studies nested in fuzzy-set QCA on
sufficiency: formalizing case selection and causal inference. Sociol Methods
Res 45(3):536–568. https://doi.org/10.1177/0049124114532446

Schneider C, Wagemann C (2012) Set-theoretic methods for the social sciences.
A guide to qualitative comparative analysis. Cambridge University Press,
Cambridge

Schneider CQ, Wagemann C (2013) Doing justice to logical remainders in
QCA: moving beyond the standard analysis. Polit Res Q 66(1):211–220.
https://doi.org/10.1177/1065912912468269h

Schneider MR, Schulze-Bentrop C, Paunescu M (2010) Mapping the institu-
tional capital of high-tech firms: a fuzzy-set analysis of capitalist variety
and export performance. J Int Bus Stud 41:246–266

Seawright J (2014) Comment: limited diversity and the unreliability of QCA.
Sociol Methodol 44(1):118–121. https://doi.org/10.1177/0081175014542082

Shannon CE (1940) A symbolic analysis of relay and switching circuits. Mas-
ter’s thesis, Massachusetts Institute of Technology, Department of Electrical
Engineering. Available on, July 2017: https://dspace.mit.edu/handle/1721.
1/11173

Skaaning SE (2011) Assessing the robustness of crisp-set and fuzzy-set
QCA results. Sociol Methods Res 40(2):391–408. https://doi.org/10.1177/
0049124111404818

Skocpol T (1979) States and social revolutions. A comparative analysis of
France, Russia, and China. Cambridge University Press, Cambridge

Smithson M, Verkuilen J (2006) Fuzzy set theory. Applications in the social
sciences. Sage, Thousand Oaks

https://doi.org/10.1177/0049124107313903
http://www.rstudio.com/shiny/
http://www.rstudio.com/shiny/
http://www.combinatorics.org/ojs/index.php/eljc/article/view/DS5/html
https://doi.org/10.1177/0049124113481341
https://doi.org/10.1177/0049124114532446
https://doi.org/10.1177/1065912912468269h
https://doi.org/10.1177/0081175014542082
https://dspace.mit.edu/handle/1721.1/11173
https://dspace.mit.edu/handle/1721.1/11173
https://doi.org/10.1177/0049124111404818
https://doi.org/10.1177/0049124111404818

278 References

Spirtes P, Glymour C, Scheines R (2000) Causation, prediction, and search,
2nd edn. MIT Press, Cambridge

Thiem A (2014) Membership function sensitivity of descriptive statistics in
fuzzy-set relations. Int J Soc Res Methodol 17(6):625–642

Thiem A (2016) Standards of good practice and the methodology of necessary
conditions in qualitative comparative analysis. Polit Anal 24(4):478–484

Thiem A, Dus,a A (2013) Qualitative comparative analysis with R. A user’s
guide. Springer, New York

Thiem A, Spöhel R, Dus,a A (2016) Enhancing sensitivity diagnostics for qual-
itative comparative analysis: a combinatorial approach. Polit Anal 24:104–
120. https://doi.org/10.1093/pan/mpv028

Thompson SL (2011) The problem of limited diversity in qualitative com-
parative analysis: a discussion of two proposed solutions. Int J Mult Res
Approaches 5(2):254–268. https://doi.org/10.5172/mra.2011.5.2.254

Valero-Mora PM, Ledesma RD (2012) Graphical user interfaces for R. J Stat
Softw 49(1):1–8

Verkuilen J (2005) Assigning membership in a fuzzy set analysis. Sociol Meth-
ods Res 33(4):462–496. https://doi.org/10.1177/0049124105274498

Verzani J (2005) Using R for introductory statistics, 2nd edn. Chapman &
Hall, Boca Raton

Weber M (1930) The protestant ethic and the spirit of capitalism. Routledge,
London

Wilkinson L (2011) Exact and approximate area-proportional circular venn
and Euler diagrams. IEEE Trans Vis Comput Graph 18(2):321–331. https://
doi.org/10.1109/TVCG.2011.56

Yamasaki S, Rihoux B (2009) A commented review of applications. In: Ri-
houx B, Ragin C (eds) Configurational comparative methods: qualita-
tive comparative analysis (QCA) and related techniques. Sage, London,
pp 123–145

Zadeh LA (1965) Fuzzy sets. Inf Control 8:338–353
Zuur A, Ieno E, Meesters E (2009) A beginner’s guide to R. Springer,
New York

https://doi.org/10.1093/pan/mpv028
https://doi.org/10.5172/mra.2011.5.2.254
https://doi.org/10.1177/0049124105274498
https://doi.org/10.1109/TVCG.2011.56
https://doi.org/10.1109/TVCG.2011.56

	Preamble
	Contents
	1 R Basics
	1.1 Working Directory
	1.2 Workspace
	1.3 Object Types
	1.4 Mathematical and Logical Operations
	1.5 Indexing and Subsetting
	1.6 Data Coercion
	1.7 User Interfaces
	1.8 Working with Script Files

	2 The QCA Package
	2.1 Installing the QCA Package
	2.2 Structure
	2.3 Command Line Mode
	2.3.1 Getting Help
	2.3.2 Function Arguments

	2.4 The Graphical User Interface (GUI)
	2.4.1 Description
	2.4.2 Starting the Graphical User Interface
	2.4.3 Creating an Executable Icon
	2.4.4 Command Construction
	2.4.5 The Web R Console
	2.4.6 Graphics
	2.4.7 The Data Editor
	2.4.8 Import, Export and Load Data

	3 Set Theory
	3.1 The Binary System and the Boolean Algebra
	3.2 Types of Sets
	3.2.1 Bivalent Crisp Sets
	3.2.2 Multivalent Crisp Sets
	3.2.3 Fuzzy Sets

	3.3 Set Operations
	3.3.1 Set Negation
	3.3.2 Logical AND
	3.3.3 Logical OR

	3.4 Complex Operations

	4 Calibration
	4.1 Calibrating to Crisp Sets
	4.2 Calibrating to Fuzzy Sets
	4.2.1 Direct Assignment
	4.2.2 Direct Method, the S-Shape Functions
	4.2.3 How Does It Works: The Logistic Function
	4.2.4 Direct Method, the Bell-Shape Functions
	4.2.5 The Indirect Method

	4.3 Calibrating Categorical Data

	5 Analysis of Necessity
	5.1 Conceptual Description
	5.2 Inclusion/Consistency
	5.3 Coverage/Relevance
	5.4 Necessity for Conjunctions and Disjunctions
	5.5 Exploring Possible Necessity Relations

	6 Analysis of Sufficiency
	6.1 Conceptual Description
	6.2 Inclusion/Consistency
	6.3 The PRI Score
	6.4 Coverage: Raw and Unique

	7 The Truth Table
	7.1 General Considerations
	7.2 Command Line and GUI Dialog
	7.3 From Fuzzy Sets to Crisp Truth Tables
	7.4 Calculating Consistency Scores
	7.5 The OUTput Value
	7.6 Other Details

	8 The Logical Minimization
	8.1 Command Line and GUI Dialog
	8.2 Conservative (Complex) Solutions
	8.3 What Is Explained
	8.4 Parsimonious Solutions
	8.5 A Note on Complexity
	8.6 Types of Counterfactuals
	8.7 Intermediate Solutions: SA and ESA
	8.8 Theory Evaluation

	9 Pseudo-Counterfactual Analysis
	9.1 eQMC
	9.2 Consistency Cubes
	9.2.1 Search Space

	9.3 Include vs. Exclude

	10 QCA Extensions
	10.1 Temporal QCA
	10.2 Coincidence Analysis: CNA
	10.3 Panel/Clustered Data
	10.4 Robustness Tests

	11 Less Known Features
	11.1 Boolean Expressions
	11.2 Negate Expressions
	11.3 Factorize Expressions
	11.4 More Parameters of Fit
	11.5 XY Plots
	11.6 Venn Diagrams
	11.7 Custom Labels

	References

