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Department of Sociology, University of Bucharest, Bucharest, Romania

Alrik Thiem
Department of Philosophy, University of Geneva, Geneva, Switzerland

Configurational comparative methods have gained in popularity among sociologists and

political scientists. In particular, Qualitative Comparative Analysis (QCA) has attracted

considerable attention in recent years. The process of Boolean minimization by means of

the Quine-McCluskey algorithm (QMC) is the central procedure in QCA, but QMC’s

exactitude renders it memory intensive and slow in processing complex output functions.

In this article, we introduce the enhanced QMC algorithm (eQMC) to alleviate these

problems. eQMC is equally exact but, unlike QMC, capable of processing multivalent

condition and outcome factors. Instead of replacing QMC, however, eQMC acts as an

optimizing complement in contexts of limited empirical diversity. We demonstrate its speed

and computer memory performance through simulations.
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1. INTRODUCTION

Configurational comparative methods have gained in popularity among social
scientists. In particular, Qualitative Comparative Analysis (QCA) has allowed socio-
logists and political scientists to present a number of compelling findings.1 Influential
contributions have been made to social movement theory (e.g., Amenta, Caren, &
Olasky, 2005; Cress & Snow, 2000), welfare state research (Hicks, Misra, & Ng, 1995;
Vis, 2009), trade and labor union studies (Brueggemann & Boswell, 1998; Dixon,
Roscigno, & Hodson, 2004), collective action and social systems theory (Lam & Ostrom,
2010; Schlager & Heikkila, 2009), economic reform and development studies (Cornell &
Kalt, 2000; Weyland, 1998) and democracy and democratization research (Berg-
Schlosser & De Meur, 1994). All of these works have argued, in one way or another, that
QCA would do more methodological justice to the implicational asymmetry of their

Both authors contributed equally to this work.
1According to the COMPASSS database, about 37% of all applied QCA publications have

appeared in sociology and comparative politics. See http://www.compasss.org/bibdata.htm for more

details (accessed March 1, 2015).
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research hypotheses than linear algebra-based techniques of regression analysis. The
logic of equifinal conjunctural causation, not that of additive explained variation, has
motivated these authors in their choice of method (Amenta & Poulsen, 1994).

The basic variant of QCA, usually called crisp-set QCA, firmly rests on Boolean
algebra—a theory of mathematical structures that has long been integral to many
areas of the natural and technical sciences, including genetic biology, information tech-
nology, and electrical engineering (e.g., Brayton, Hachtel, McMullen, & Sangiovanni-
Vicentelli, 1984; Edwards, 1973; Thomas, 1973).2 In social sciences, however, Boolean
algebra has led a niche existence until the pioneering article on employment discrimi-
nation by Ragin, Mayer, and Drass (1984) and the textbook by Ragin (1987)
introduced its basic principles to a wider community of scholars. In essence, the core
mechanism of QCA consists in the use of a few Boolean-algebraic theorems to reduce
an exhaustive output function which represents a formal description of regularity
patterns to a minimally complex equivalent that still preserves all the essential
properties of the original representation of the function.3

This process of reduction is referred to as Boolean minimization, for which
different algorithms have been introduced. Among them, Quine-McCluskey (QMC)
is most well-known (McCluskey, 1956; Quine, 1952). It is exact and suitable for pro-
cessing moderately complex Boolean functions. For example, the popular QMC-based
QCA software fs=QCA 2.5 (Ragin & Davey, 2012) can handle about 12 condition
factors.4 But exactitude comes at a cost. For many industrial applications, the
memory-intensity of QMC makes its use ‘‘totally impractical even for medium sized
problems’’ (Brayton et al., 1984, p. 8). Approximate methods developed in response
can process considerably more factors at much higher speeds, but they cannot
guarantee exact solutions. Conversely, this orientation renders them unsuitable
for research in the social sciences, where very few problems are of a magnitude
similar to those found in very large-scale circuit integration. In consequence,
beyond a certain number of condition factors, there exists a trade-off for problems
of Boolean minimization between result exactitude and model complexity.

In this article, we present a new algorithm for minimizing Boolean and multivalue
output functions, which we call enhanced Quine-McCluskey (eQMC) because it com-
plements QMC instead of replacing it entirely.5 The mathematical approach of eQMC

2Two generalized variants of crisp-set QCA exist. The first extension is multivalue QCA (Cronqvist

& Berg-Schlosser, 2009), the second fuzzy-set QCA (Ragin, 2008). Although the former rests on multivalue

logic and the latter on fuzzy logic, both of which generalize Boolean algebra in different directions, we refer

to Boolean algebra throughout this article for simplicity because the principle behind the minimization

procedure to be introduced remains the same. A fourth variant called generalized-set QCA has recently

joined the fold (Thiem, 2013, 2014).
3For an introduction to Boolean algebra, see Hohn (1966). The standard terms in QCA for Boolean

input and output variables are condition and outcome factors. We use these terms and the nomenclature of

set theory as one branch of Boolean algebra to distinguish between linear-algebraic and Boolean-algebraic

operations.
4Ragin (2000) has also introduced an inclusion algorithm which parted in many ways with QMC,

but abandoned it again later to replace it with the QMC-based truth table algorithm (Ragin, 2008).
5The eQMC algorithm has been implemented in the QCA package for the R environment (Duşa &

Thiem, 2014; Thiem & Duşa, 2013b, 2013c; R Development Core Team, 2014), currently in version 1.1-4,

and is thus available to applied users and open to review. For a review of current software and their

specific minimization algorithms, see Thiem and Duşa (2013a).
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guarantees exact solutions, but it generates them at a fraction of the memory and time
resources consumed by QMC. Moreover, eQMC is not confined to bivalent factors but
generalizes to multivalent ones (Duşa, 2011).6 As a result, it creates new possibilities for
conducting configurational comparative research by pushing back the conceptual and
computational boundaries that have set certain limits.7 Although these limits have been
rarely approached in applied research with QCA, we argue that if nothing is lost for
the majority of applications at the lower to intermediate ranges of complexity, but
much gained for a minority at the upper ranges, the introduction of eQMC makes
a significant net contribution to the field of configurational comparative modeling.

The article is structured around three sections. In Section 2, we revisit some
elementary concepts in Boolean algebra and explain the logic behind QMC for
minimizing Boolean output functions. To prepare the ground for the following
sections and also to facilitate later generalization, we do not strictly adhere to Boolean
algebra but extend the exposition to multivalent factors. Subsequently, Section 3 intro-
duces the solution to QMC’s shortcomings offered by eQMC. After its fundamental
steps will have been expounded on in a first subsection, two following subsection on
the role of logical remainders in eQMC’s minimization procedure and the identification
of prime implicants, respectively, complete this part of the article. In Section 4, we
demonstrate the superiority of eQMC over QMC with respect to speed and memory
consumption through a set of simulations. In the conclusions, practical implications
of our results are broached and future avenues of research identified.

2. BOOLEAN MINIMIZATION AND QMC

The essential device in applications of Boolean minimization such as QCA is the
function table.8 A function table Fd�(kþw) is a two-dimensional array of d rows and
kþw columns. Any row ci, with i¼ 1, 2,. . ., d, over the first k columns in F is called
a configuration. Every configuration ci represents a unique product over all pj possible
combinations of levels vh,j of condition factors Xj, with h¼ 1, 2, . . ., p and j¼ 1, 2,. . ., k.
Every configuration ci is thus associated with a unique k-way Boolean product as given
by Eq. (1):

ci ¼ X1fvhg \ X2fvhg \ . . . \ Xkfvhg ¼
\k
j¼1

Xjfvhg: ð1Þ

The set of all configurations CF¼ {c1, c2,. . ., cd} constitutes the configuration
matrix of F, with d being equal to the arithmetic product of the total number of levels
of all condition factors as given by Eq. (2):

d ¼ p1 � p2 � . . . � pj � . . . � pk ¼
Yk

j¼1

pj: ð2Þ

6We use the terms bivalent, trivalent, multivalent, etc. to indicate the number of levels a factor

comprises.
7We explicitly speak of ‘‘possibilities’’ since the advantages of eQMC over QMC do not materialize

under all research designs. We elaborate on this point in Section 4.
8Function tables are also commonly known in QCA as truth tables or tables of combinations.
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Based on the number of level sequences seqF
j within j and the number of

repetitions repF
j of each level vh,j within each such sequence, every configuration

matrix can be constructed in a specific way.9 Let the number of level sequences
for each condition factor j¼ z, seqF

z , be determined by Eq. (3):

seqF
z ¼

dQk
j¼z pj

¼
Qk

j¼1 pjQk
j¼z pj

¼
Yz�1

j¼1

pj: ð3Þ

Furthermore, let the number of repetitions repF
z for any level vh,j with j¼ z be

given by Eq. (4):

repF
z ¼

dQz
j¼1 pj

¼
Qk

j¼1 pjQz
j¼1 pj

¼
Yk

j¼zþ1

pj: ð4Þ

Eqs. (3) and (4) imply that repF
k ¼ seqF

1 ¼ 1 will always be true. By Eqs. (1) to
(4), the generic function table shown in Table 1 results. For k� 3, and any condition
factors j¼ 1 and j¼ k� 1, it must be true that repF

1 � 4 and repF
k�1 � 2. For example,

three condition factors X1, X2 and X3, with p1¼ 2, p2¼ 3 and p3¼ 2, generate a table
of functions F12�(3þ1) with seqF

1 ¼ 1 and repF
1 ¼ 6, seqF

2 ¼ 2 and repF
2 ¼ 2, and seqF

3 ¼ 6
and repF

3 ¼ 1.
In order to complete F, let the (kþ 1)th to (kþw)th columns of Table 1 be

denoted by Zi(O1{vh}), Zi(O2{vh}), . . ., Zi(Ow{vh}), which represent binary function
values of an operation on all levels of the condition factors and exactly one level each
of a set of outcome factors O1, O2, . . ., Ow. In QCA, this operation is usually called
consistency (Ragin, 2006) or inclusion (Thiem & Duşa, 2013b, 2013c), and posits
a subset relation between each configuration and an outcome. Note that the outcome
itself, that is, the level of the outcome factor under consideration, does not show
up in the function table because there can be two or more instances of any specific
configuration that coincide with different levels of any specific outcome factor.
For the sake of simplicity and without loss of generality, we limit ourselves to designs
with single outcomes Z(O{vh}) in the remainder of the article.

Once Z(O{vh}) has been determined for all ci2CF, the information contained
in F can be expressed by means of an output function f as given by Eq. (5):

f ðOfvhgÞ ¼ Z1c1 [ Z2c2 [ . . . [ Zdcd ¼
[d
i¼1

Zici : ð5Þ

Every product Zici in f is a complete product (F ). Complete products which
correspond to configurations for which Z(O{vh})¼ 1 is true are called positive and
will be denoted by F 1. In contrast, complete products for which Z(O{vh})¼ 0 is true

9Configuration matrices can also be constructed by representing its rows as numbers from 0 to d� 1

using a binary, tertiary, etc., number system. For example, with four Boolean condition factors, the last

row (15) in the configuration matrix would contain the combination X1{1}X2{1}X3{1}X4{1} because

1 � 23þ 1 � 22þ 1 � 21þ 1 � 20¼ 15. In order not to have to switch between different number systems, we have

opted for an arithmetic approach to presentation.
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are called negative and will be denoted by F 0. Positive-complete products in QCA
result if, and only if, F �O{vh} according to the inclusion score determining Z,
whereas negative-complete products result if, and only if, F 6�O{vh}.10

Output functions derived from function tables are often unnecessarily complex
because they include irrelevant information with regards to O{vh}, where ‘‘irrelevant’’
is taken to mean information whose elimination leaves the function value unchanged.
Several methods of reducing output functions have been devised over decades of
research in propositional logic and switching circuit theory. For example, in problems
of low to moderate complexity with k� 6, Veitch-Karnaugh maps provide a useful
graphical means (Hohn, 1966, pp. 170–201).11 However, a more sophisticated device
has been proposed in the form of the QMC algorithm (McCluskey, 1956; Quine, 1952).

QMC’s core procedure consists in the repeated use of the general Boolean-
algebraic theorem U{1}W{1}þU{1}W{0}¼U{1}(W{1}þW{0})¼U{1}(1)¼U{1},
where U and W denote Boolean expressions of unspecified complexity, in order to
transform an unreduced output function containing only positive-complete products
to a minimal yet equivalent representation of the same function by progression
through a limited number of transitory states. The first of these states is reached

TABLE 1 Generic Function Table Fd�(kþw)

Zi

ci X1 . . . Xj . . . Xk O1{vh} O2{vh} . . . Ow{vh}

1 v1 . . . v1 . . . v1 . . . . . . . . . . . .

2 v1
..
.

v1
..
.

v2
..
. ..

. ..
. ..

.

..

.
v1

..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
.

..

.
v1

..

.
v2

..

.
vp

..

. ..
. ..

. ..
.

..

. ..
. ..

.
v2

..

.
v1

..

. ..
. ..

. ..
.

..

.
v2

..

. ..
. ..

.
v2

..

. ..
. ..

. ..
.

..

.
v2

..

.
vp

..

. ..
. ..

. ..
. ..

. ..
.

..

.
v2

..

.
vp

..

.
vp

..

. ..
. ..

. ..
.

..

.
v2

..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
.

..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
.

..

.
vp

..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
.

..

.
vp

..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
.

..

.
vp

..

.
vp

..

. ..
. ..

. ..
. ..

. ..
.

..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
.

d vp . . . vp . . . vp . . . . . . . . . . . .

10We disregard cases of contradictions (not to be understood in the logical sense). Contradictions

describe an indeterminate state between Z(O{vh})¼ 1 and Z(O{vh})¼ 0 for which analysts are reluctant

to assign binary function values.
11For an application of such maps in multivalue QCA, see Thiem (2015).
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by combining all pairs fF 1
i¼z;F 1

i 6¼zg that differ by level on one and the same con-
dition factor only across all levels of this factor to successively form less complex
equivalents of f. Any product resulting from a paired simplification of two
positive-complete products is then called a proper implicant (I1).

More precisely, a proper implicant I1 of f with respect to F 1 is a product of
condition factor levels

Tm
j Xjfvhg with m< k, which is included in f, and which

has the property that, if any level Xj{vh} is eliminated from this product, then the
remaining product is still included in f. More generally, a function g1(X1, X2,. . ., Xk)
is said to include another function g2(X1, X2,. . ., Xk), written g1� g2 or g2� g1, if,
for each combination of levels for which g2¼ 1 is true, g1¼ 1 is also true.

Once proper implicants have been derived after the process of minimizing all
positive-complete products, they can usually be simplified further. QMC is an iterat-
ive algorithm involving the systematic and exhaustive comparison of all positive-
complete products in the initiating pass, and over the following iterations the
comparison of all proper implicants until no more condition factors can be
absorbed. The surviving proper implicants at the end of this chain are then called
prime implicants (P1). A prime implicant P1 of f with respect to F 1 is a product
of conditon factor levels

Tm
j Xjfvhg with m< k, which is included in f, and which

has the property that, if any level Xj{vh} is eliminated from this product, then
the remaining product is not included anymore in f.12 Once the final iteration is
completed and the set of prime implicants has been generated, a prime implicant
chart is constructed and solved according to the constraints specified by the
analyst.13

Between two and four condition factors, QMC can still be performed by
pen-and-paper procedures without much effort, but the geometric growth rate in
the number of paired comparisons dictates the use of tailored software beyond this
range. Four bivalent condition factors generate a function table of only 16 rows,
but 10 such factors already create no fewer than 1024 configurations. In the
fs=QCA software, for example, QMC imposes a computational ceiling on model
complexity at about 12 condition factors. In the remainder of this article, we intro-
duce an alternative approach that circumvents the brake put on QMC through the
iterative comparison of implicants within high-dimensional matrices.

3. THE SOLUTION TO QMC’S SHORTCOMINGS

We propose a novel solution to the problem of minimizing output functions.
Since this approach complements QMC rather than replacing it entirely, we call it
the enhanced Quine-McCluskey (eQMC) algorithm. The first subsection presents
the fundamentals of eQMC before the second subsection elaborates on the way in
which the algorithm deals with logical remainders. Finally, the third subsection
explains how eQMC identifies prime implicants.

12In the extreme case where no Boolean minimization is possible, F 1¼I1¼P1.
13For more detailed explanations of prime implicant charts, see Edwards (1973, p. 98ff.), Lewin and

Protheroe (1992, p. 76ff.), and McCluskey (1965, p. 140ff.).

MINIMIZATION OF BOOLEAN AND MULTIVALUE OUTPUT 97



3.1. Fundamentals of eQMC

The approach of eQMC is based on two seemingly trivial observations. First,
every positive-complete product F 1

i is a (proper) subset of a least one prime impli-
cant P1

i . Second, no negative-complete product F 0
i is a subset of any prime implicant

(Duşa, 2007). On the basis of these two interconnected facts, eQMC performs
an exhaustive procedure that relies on index vectors instead of complex matrices.
These index vectors are generated from an auxiliary device called implicant matrix.

Implicant matrices and function tables look similar and partly overlap in the
information they contain, but they consist of different representations of this
information. While each cell in a function table usually records a condition factor
level, either 0 or 1 in the case of Boolean tables, cells in implicant matrices collect
factor level indices.14 For each condition factor, this index is augmented by
a degenerate zero-value indicating the elimination of this factor. Generally defined,
an implicant matrix Xq�ð1þkþ1Þ is a two-dimensional array of q rows and 1þ kþ 1
columns. The rows not only contain level index representations of all complete
products F , but also of all proper implicants I and prime implicants P.
Since Xq�ð1þkþ1Þ includes configurations and prime implicants as limiting constructs,
it is called an implicant matrix.

Similar to the principles of setting up function tables introduced in Eqs. (1) to
(4) above, let the number of implicants q in X be determined by the adjusted product
of the total number of levels of all condition factors as given in Eq. (6):

q ¼ ðp1 þ 1Þ � ðp2 þ 1Þ � . . . � ðpj þ 1Þ � . . . � ðpk þ 1Þ ¼
Yk

j¼1

ðpj þ 1Þ: ð6Þ

Based on the number of level index sequences seqX
j within j and the number of

repetitions repX
j of each level index value h within each such sequence, every impli-

cant matrix can be constructed in a specific way. Let the number of level index
sequences for each condition factor j¼ z, seqX

z , be given by Eq. (7):

seqX
z ¼

qQk
j¼1 ðpj þ 1Þ

¼
Qk

j¼1 ðpj þ 1ÞQk
j¼1 ðpj þ 1Þ

¼
Yz�1

j¼1

ðpj þ 1Þ: ð7Þ

Furthermore, let the number of repetitions repX
j for any level index value hj

with j¼ z be given by Eq. (8):

repX
z ¼

qQz
j¼1 ðpj þ 1Þ ¼

Qk
j¼1 ðpj þ 1ÞQz
j¼1 ðpj þ 1Þ ¼

Yk

j¼zþ1

ðpj þ 1Þ: ð8Þ

By Eqs. (6) to (8), the generic implicant matrix in Table 2 results. The leftmost
column represents the implicant ri with i¼ 1, 2,. . ., q. Thus, implicant matrices are
comprised of all possible supersets q that can be formed from a given set of k

14Potentially, this could also apply to function tables, but as this solution is not generally

considered, we draw an explicit distinction between factors and their level indices.

98 A. DUŞA AND A. THIEM



condition factors, including the empty set in r1, and all configurations c1 to cd. The
full condition factor level representation of each implicant is provided in the
rightmost column for illustrative purposes, but it forms no essential part of X.

Each configuration in X thus possesses a finite number of nontrivial implicants
sk, which is determined by the sum of binomial coefficients defined in Eq. (9):

sk ¼
k
1

� �
þ k

2

� �
þ � � � þ k

j

� �
þ � � � þ k

k

� �
¼
Xk

j¼1

k!

j!ðk � jÞ!¼ 2k � 1 : ð9Þ

Note that sk only depends on k, not on pj. For example, every generic configuration
X1{�}\X2\ {�}X3{�} has exactly seven implicants: X1{�}, X2{�}, X3{�}, X1{�}\X2{�},
X1{�}\X3{�}, X2{�}\X3{�} and X1{�}\X2{�}\X3{�}. As illustrated in the Venn
diagram in Figure 1, these implicants also form the following set relations among
themselves: X1{�}	X1{�}\X2{�}[X1{�}\X3{�}, X2{�}	X1{�}\X2{�}[X2{�}\X3{�},
X3{�}	X1{�}\X3{�}[X2{�}\X3{�}.

The index values of the rows in X that correspond to the implicants of
a configuration can be computed by the following technique. A multiplication vector
m is formed (Duşa, 2011), each of whose k elements equals the number of level index
repetitions repX

j for the corresponding condition factor as given in Eq. (10):

m ¼
Yk

j¼2

ðpj þ 1Þ;
Yk

j¼3

ðpj þ 1Þ; . . . ;
Yk

j¼k

ðpj þ 1Þ; 1
!
¼ ðm1;m2; . . . ;mkÞ: ð10Þ

TABLE 2 Generic Implicant Matrix Xq�ð1þkþ1Þ

ri h1 . . . hj . . . hk F Implicant

1 0 ..
.

0 ..
.

0 ..
.

;
2 0 ..

.
0 ..

.
1 ..

.
. . .\ . . .\Xk{v1}

..

.
0 ..

.
0 ..

.
2 ..

.
. . .\ . . .\Xk{v2}

..

.
0 ..

. ..
. ..

. ..
. ..

.
. . .\Xj{ � }\ . . .\Xk{ � }

..

.
0 ..

.
1 ..

.
pk

..

.
. . .\Xj{v1}\ . . .\Xk{vp}

..

.
0 ..

.
1 ..

.
0 ..

.
. . .\Xj{v1}\ . . .

..

.
0 ..

.
1 ..

.
1 ..

.
. . .\Xj{v1}\ . . .\Xk{v1}

..

.
0 ..

. ..
. ..

.
2 ..

.
. . .\Xj{ � }\ . . .\Xk{v2}

..

.
0 ..

.
2 ..

. ..
. ..

.
. . .\Xj{v2}\ . . .\Xk{ � }

..

. ..
. ..

.
2 ..

.
pk

..

.
X1{ � }\ . . .\Xj{v2}\ . . .\Xk{vp}

..

.
1 ..

.
2 ..

. ..
. ..

.
X1{v1}\ . . .\Xj{v2}\ . . .\Xk{ � }

..

. ..
. ..

. ..
. ..

. ..
. ..

.
X1{ � }\ . . .\Xj{ � }\ . . .\Xk{ � }

..

.
2 ..

.
pj

..

. ..
. ..

.
X1{v2}\ . . .\Xj{vp}\ . . .\Xk{ � }

..

. ..
. ..

. ..
. ..

. ..
. ..

.
X1{ � }\ . . .\Xj{ � }\ . . .\Xk{ � }

q p1 . . . pj . . . pk
..
.

X1{vp}\ . . .\Xj{vp}\ . . .\Xk{vp}
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The multiplication vector m is then used to form the Hadarmard product with
each row vector of condition factor level indices ri(F 1) that represents a positive-
complete product. This product is defined by Eq. (11):

ri F 1
� �


m ¼ ðhi;1m1; hi;2m2; . . . ; hi;kmkÞ: ð11Þ

All 2k� 1 unique sums that can be formed from this product then yield the row

index vector r1
1 ¼ ðr1

1;1; r
1
1;2; . . . ; r1

1;2k�1Þ for the first of all x F 1 after a unit vector u has

been added.15 For example, if X1 is bivalent, and both X2 and X3 are trivalent
condition factors, then m¼ (16, 4, 1). If the configuration X1{1}\X2{2}\X3{2}

in c18 of F18�4 is positive-complete as F 1
18, then the Hadarmard product yields

r48.m¼ (2 � 16, 3 � 4, 3 � 1)¼ (32, 12, 3) because X1{1}\X2{2}\X3{2} is always found
in r48¼ (2, 3, 3) of X48�5. All seven possible sums that can be formed from this

product then generate the row index vector r1
1 ¼ ð33; 13; 4; 45; 36; 16; 48Þ after u

has been added. This procedure is repeated for all x positive-complete products.

The set union of all row index vectors r1
1; r

1
2; . . . ; r1

x1
yields the positive implicant vector

r1 because all its elements are associated implicants of positive-complete products.
While QMC only processes F 1, eQMC also requires row index vectors of F 0.

The multiplication vector m is thus recycled to form the Hadarmard product with
each row vector ri(F 0). This product is defined as given in Eq. (12).

ri F 0
� �


m ¼ ðhi;1m1; hi;2m2; . . . ; hi;kmkÞ ð12Þ

All 2k� 1 unique sums that can be formed from this product then yield the row
index vector r0

1 ¼ ðr0
1;1; r

0
1;2; . . . ; r0

1;2k�1Þ for the first of all y F 0 after u has been added.
For example, if configuration X1{1}\X2{2}\X3{0} in c16 of F18�4 is
negative-complete as F 0

16, then r32 . m¼ (2 � 16, 3 � 4, 1 � 1)¼ (32, 12, 1) because this
configuration is always found in r46¼ (2, 3, 1) of X48�5. All seven possible sums that
can be formed from this product then generate the row index vector
r0

1 ¼ ð33; 13; 2; 45; 34; 14; 46Þ. This procedure is repeated for all y F 0. The union of
all row index vectors r0

1; r
0
2; . . . ; r0

y1
yields the negative implicant vector r0 because

all its elements are associated implicants of negative-complete products.

FIGURE 1 Set relations among configuration implicants.

15As Eq. (9) is computed in base 10, which starts with 0, but ri starts with i¼ 1, the unit vector has

to be added.
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The relative complement of r0 in r1 yields the implicant difference vector rD. For
example, if the two instances of r0

1 and r1
1 given above were the only row index vectors

such that r0
1 ¼ r0 and r1

1 ¼ r1, then rD¼ (4, 36, 16, 48) because r1nr0¼ (33, 13, 4, 45, 36,
16, 48)n(33, 13, 2, 45, 34, 14, 46)¼ (4, 36, 16, 48). Row r4 corresponds to X3{2}, r16 to
X2{2}\X3{2} and r36 to X1{1}\X3{2}, all three of which are proper implicants of
X1{1}\X2{2}\X3{2}, but not of X1{1}\X2{2}\X3{0}. The proper implicant
X1{1}\X2{2} corresponding to r45¼ (2, 3, 0) cannot be part of any solution because
it is included by both X1{1}\X2{2}\X3{2} as well as X1{1}\X2{2}\X3{0}. In
the case of rD containing only row index values that of positive-complete products,
then f is non-minimizable and the output function is free from redundancies.

3.2. Dealing with Logical Remainders

In an empirically ideal world, where ‘‘ideal’’ should be taken to mean ‘‘fully
saturated,’’ researchers would have perfect information about Zi(O{vh}). However,
not only is social reality empirically limited, but the very idea of systematic
configurational comparison has from the start focused on small numbers of cases,
as a result of which the number of configurations often exceeds the number of
objects under investigation, sometimes considerably so.16 It will therefore usually
prove impossible to assign binary function values to the vast majority of configura-
tions based on empirics. A configuration without a function value is called a logical
remainder, or a don’t care, in switching circuit theory. A don’t care implies that
Boolean minimization does not factor in whether terminal gates are open or not,
as long as a less complex gate-lead structure can be obtained. The same principle
holds in the social sciences. Even if the function values of logical remainders are
unknown, researchers assume, based on counterfactual reasoning, that these values
could be established were these configurations to be observed in social reality.

Logical remainders are responsible for the exponential increase in the
complexity of the output function f. The eQMC algorithm alleviates this problem
because only observed configurations and their implicants are used in deriving the
implicant difference vector. As a result, the inclusion of logical remainders, irrespec-
tive of the criteria on which this inclusion is based, has no effect whatsoever on the
amount of information that has to be processed by eQMC. Only as the number of
logical remainders which are coded as negative-complete products increases does
eQMC begin to lose its competitive advantage. In this case, eQMC incorporates their
implicants into the negative implicant vector, which in turn reduces its performance.
If all logical remainders are assigned a negative function value (a strategy called the
complex or conservative solution), QMC is clearly superior to eQMC in performance,
all the more so with increasing numbers of condition factors. This implies that QMC
and eQMC work best when complemented by each other. QMC’s resource consump-
tion increases with the number of remainders made available for minimization,
whereas that of eQMC increases relative to QMC with the number of remainders
that are excluded from it.

16The analysis by Cress and Snow (1996) on homeless social movement organizations provides an

extreme example of a mismatch between cases and configurations. It features 15 objects which cover 10

configurations, but 14 conditions create a property space of no fewer than 16,384 configurations.
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3.3. Identifying Prime Implicants

No exact formula for computing the number of implicants exists, but
the number of prime implicants can grow as large as 3k=k (Brayton et al., 1984).
The implicant difference vector rD is computed using an exhaustive method, but
many implicants are not prime implicants. However, X is constructed in such
a way that for any two implicants Ia in ra and Ib in rb for which Ia	Ib is true,
a< b will also be true. eQMC thus proceeds by sorting rD ¼ ðrD

1 ; r
D
2 ; . . . ; rD

xD
Þ such

that rD
1 < rD

2 < . . . < rD
xD

.
All row index values that correspond to proper subsets of an element in rD are

then eliminated in succession, beginning with rD
1 . The procedure first identifies all

hj¼ 0 in rrD
1

before collecting together all row index values that result from the con-
secutive addition of the corresponding element in the multiplication vector m over all
t columns in X for which hj¼ 0 is true. Formally, this vector arD

1
¼ ða1 [ a2 [ � � � [ atÞ

is created as the union of all unique elements resulting from a series of sub-vector
Eqs.. If for any a2 a except rD

1 , I rD
1
	 Ia and a2 rD, then a is eliminated from rD.

With the shortened implicant difference vector rD
1 , the same procedure is repeated

starting with rD
2 . If for any a2 a except rD

2 , I rD
2
	 Ia and a 2 rD

1 , then a is eliminated
from rD

1 , yielding rD
2 , and so on.

An example with three bivalent condition factors X1, X2 and X3 again serves to
illustrate these steps. Consider an (already ordered) implicant difference vector
rD¼ (2, 5, 11, 14, 19, 21, 22, 24, 25, 27) derived from the implicant matrix X27�5

shown in Table 4. As rD
1 ¼ 2, eQMC starts with r2¼ (0, 0, 1), which corresponds

to X3{0} (bold; dashed cell borders), and first finds all zero-values in that row
(underlined). These appear in columns h1 and h2. Starting with the rightmost column
h2, its corresponding vector a1 is given by a1¼ (2, 2þ 1 � 3, 2þ 2 � 3)¼ (2, 5, 8)
because m2¼ 3 and p2¼ 2. Row r5 corresponds to X2{0}\X3{0} and r8 to
X2{1}\X3{0}, both of which are subsets of X3{0} only involving condition factor
X2 in addition.

The next vector a2 is associated with h1, where the second zero-
value appears. As the corresponding multiplier from m is m1¼ 9, a2¼ (2þ 1 � 9,
5þ 1 � 9, 8þ 1 � 9, 2þ 2 � 9, 5þ 2 � 9, 8þ 2 � 9)¼ (11, 14, 17, 20, 23, 26). The union
of a1 and a2 yields a1[ a2¼ a¼ (2, 5, 8, 11, 14, 17, 20, 23, 26). All of these subsets
of X3{0} are indicated by ‘‘2’’ in the column ‘‘	’’ of Table 3. Since 5, 11, and 14
are also elements in rD and their corresponding implicants I5, I11 and I14 are all
subsets of I2, rD is shortened to rD

1 ¼ ð2; 19; 21; 22; 24; 27Þ. When repeating this
procedure for r19—the next element in rD

1 after 2—the final implicant difference
vector rD

2 ¼ ð2; 19Þ results. Both corresponding prime implicants X3{0} (r2) and
X1{1} (r19) are essential because the former covers X1{0}\X2{0}\X3{0} (r14),
whereas the latter covers X1{1}\X2{0}\X3{1} (r24) and X1{1}\X2{1}\X3{1}
(r27). Thus, the solution to the minimization is X1{1}[X3{0}. This approach
of eliminating implicants is efficient because rD is shortened progressively,
reaching its final form in the smallest possible number of iterations. At the
end, it contains only the set of prime implicants. In the last step of eQMC,
a standard linear optimization routine solves the prime implicant chart. Strictly
speaking, it is thus no integral part of the algorithm. We briefly summarize
the steps of eQMC again in Table 4.
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4. TESTING THE PERFORMANCE OF eQMC

In this section, the computational capabilities of eQMC in terms of
speed and memory consumption by simulation are demonstrated by comparison
with the capabilities of the most efficient implementation of QMC available

TABLE 4 Summary of Steps Performed by eQMC

Step Task

1 Set up implicant matrix Xq�ð1þkþ1Þ from function table Fd�(kþ 1)

2 Compute multiplication vector m from level index repetitions repX
j

3 Compute positive implicant vector r1 from row index vectors for all F 1

4 Compute negative implicant vector r0 from row index vectors for all F 0

5 Compute implicant difference vector rD as relative complement r1nr0

6 Sort implicant difference vector rD in ascending order

7 Eliminate redundant implicants from rD

8 Construct and solve prime implicant chart from surviving elements of rD

TABLE 3 Hypothetical Implicant Matrix X27�5

ri h1 h2 h3 Implicant F 	

1 0 0 0 ;
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

2 0 0 1 X3{0} 2

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

3 0 0 2 X3{1}

4 0 1 0 X2{0}

5 0 1 1 X2{0}X3{0} 2

6 0 1 2 X2{0}X3{1}

7 0 2 0 X2{1}

8 0 2 1 X2{1}X3{0} 2

9 0 2 2 X2{1}X3{1}

10 1 0 0 X1{0}

11 1 0 1 X1{0} X3{0} 2

12 1 0 2 X1{0} X3{1}

13 1 1 0 X1{0}X2{0}

14 1 1 1 X1{0}X2{0}X3{0} 1 2

15 1 1 2 X1{0}X2{0}X3{1} 0

16 1 2 0 X1{0}X2{1}

17 1 2 1 X1{0}X2{1}X3{0} 2

18 1 2 2 X1{0}X2{1}X3{1} 0

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

19 2 0 0 X1{1} 19

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

20 2 0 1 X1{1} X3{0} 2,19

21 2 0 2 X1{1} X3{1} 19

22 2 1 0 X1{1}X2{0} 19

23 2 1 1 X1{1}X2{0}X3{0} 2,19

24 2 1 2 X1{1}X2{0}X3{1} 1 19

25 2 2 0 X1{1}X2{1} 19

26 2 2 1 X1{1}X2{1}X3{0} 2,19

27 2 2 2 X1{1}X2{1}X3{1} 1 19
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(Duşa, 2010).17 We let the number of bivalent condition factors k vary between
5 and 15. For each k, 50 random samples of 20 observed configurations are drawn,
half of which are coded as positive-complete products, the other half as negative-
complete products. This implies that with 5 condition factors, 37.5% of configurations
represent logical remainders, whereas this figures increases to 99.9% with 15 condition
factors. We assume this to be a reasonable approximation of many case distributions
in empirical applications.

For each k, two variables are measured. First, we compute the average speed
across all samples as seconds taken from the specification of the output function
until the completion of the minimization process, which ends with the decomposition
of the PI chart. For reasons of simplicity and comparability, we disregard ambigu-
ities in the data and determine only the most economical solution. Second, we record
random access memory (RAM) consumption in megabytes (MB). Figure 2 shows the
performance of QMC and eQMC in terms of speed. Notice that for reasons of better
readability, the scale of the ordinate has been transformed to log6. Between 7 and 10
condition factors, the speed advantage of eQMC over QMC varies between a factor of
1.2 and 15. At 10 condition factors, QMC completes the minimization in 0.2 s, whereas
it takes eQMC barely 0.01 s. Below 7 condition factors, both QMC and eQMC are
roughly on a par in speed, with only substantively irrelevant differences. This picture
changes dramatically at the higher ends of model complexity. For Boolean functions
with 10 to 15 condition factors, the speed advantage of eQMC increases to factors of
between 15 and 39. These differentials are considerable. At 15 conditions factors, it
takes QMC over 3 min to derive the solution, whereas eQMC does not even require
5 s for performing the same operation.

The results from the memory consumption simulation are presented in
Figure 3, in which the scale of the ordinate has been transformed to log7. While

17This allows us to compare both algorithms up to 15 condition factors. We use a regular end-user

machine with the following components: Microsoft Windows 7 64-bit operating system, 6 GB RAM, Intel

Core i7-2640 M CPU, 2.80 GHz.

FIGURE 2 Speed comparison between QMC and eQMC.
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the advantage of eQMC over QMC is moderate and substantively unimportant
at lower numbers of condition factors, the consumption gap widens enormously
with increasing complexity. Between 7 and 10 condition factors, eQMC consumes
only up to a sixth of the memory required by QMC, but beyond 10 condition factors,
it plays out its strengths. At k¼ 15, memory consumption drops by a factor of
around 90. In absolute numbers, QMC needs about 1.5 GB of RAM, whereas
eQMC uses only 16 MB on average, with minimum requirements as low as 8 MB
and maximum requirements not exceeding 30 MB.

In summary, the results from these simulations attest to the superiority of
eQMC over QMC for social-scientific minimization problems of moderate to
high complexity, whereas little is gained at lower ends. Thus, if complex problems
have to be solved or if simulation requires a large number of minimization runs,
for example, in order to estimate average result sensitivity effects, then the advantages
of employing eQMC instead of QMC cannot be denied.

5. CONCLUSIONS

Sociologists and political scientists continue to further leverage the Boolean
perspective on data analysis offered by QCA. However, while the basic logic of
Boolean minimization has been well understood, the technicalities behind this
process have so far been hidden from the eyes of the vast majority of social scientists.
But it is these technicalities that set the limits of QCA’s applicability, even though
scientists rarely come close to reaching them. An important factor in this regard is
the respective algorithm through which minimization is performed.

In this article, we first discussed the inherent weaknesses and strengths of the
approach offered by the traditional QMC algorithm. If the minimization problem
becomes increasingly complex, what with the inclusion of logical remainders into
the output function, QMC slows down at a geometric rate and eventually uses up
the computer’s entire memory. In order to address these problems, we have
presented the eQMC. Results obtained from simulations have shown memory

FIGURE 3 Memory consumption comparison between QMC and eQMC.
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consumption and completion time to be reduced to an inconsiderable fraction of
the amount and duration required by QMC in complex Boolean models. Over this
range, eQMC pushes back the current boundaries of configurational comparative
research.

All methodological enhancements come at some cost, and eQMC is no
exception in this respect. As the set of configurations that are expressly excluded
from the minimization process grows, eQMC becomes progressively slower until
its superiority over QMC disappears. Our algorithm therefore enhances and extends
QMC instead of replacing it fully. The exact location of the tipping point, the
implications this carries for further algorithmic revisions, and possible integration
with other approaches such as graph-based agents or coincidence analysis
(Baumgartner, 2009, 2013) are aspects to be examined in future research.
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Thiem, A., & Duşa, A. (2013b). QCA: A package for Qualitative Comparative Analysis.
The R Journal, 5, 87–97.

Thiem, A., & Duşa, A. (2013c). Qualitative Comparative Analysis with R: A user’s guide.
New York, NY: Springer.

Thomas, R. (1973). Boolean formalization of genetic control circuits. Journal of Theoretical
Biology, 42, 563–585.

Vis, B. (2009). Governments and unpopular social policy reform: Biting the bullet or steering
clear? European Journal of Political Research, 48, 31–57.

Weyland, K. (1998). The political fate of market reform in Latin America, Africa, and Eastern
Europe. International Studies Quarterly, 42, 645–673.
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