Set Theoretic Methods

INTRODUCTION

There are various ways to analyze social phe-
nomena. The traditional, qualitative, and
quantitative approaches involve specialized
languages and seemingly incompatible meth-
ods — but such phenomena can also be framed
in terms of set relations, as it is often the case
in common, everyday language. For instance,
poverty research can either employ quantita-
tive, nationally representative samples, or
they can use case studies to unfold particular,
exemplar life stories that are usually obscured
by numbers, or it can be framed in a set theo-
retical perspective, as recently demonstrated
by Ragin and Fiss (2017).

Ragin and Fiss studied the relation between
poverty and various configurational patterns
that include race, class, and test scores and
found that white people are mainly character-
ized by multiple advantages that protect them
from poverty, while there are configurations of
disadvantages that are mainly prevalent in black
people. These disadvantages do not necessarily
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lead to poverty, with an important exception:
when they combine with black women.

Being black, being a woman, and having
children, along with a configuration of disad-
vantages, are factors that are more than suffi-
cient to explain poverty. This approach is less
concerned about the relative effects of each
independent variable included in the model,
but rather about identifying membership in a
particular set (in the current example, of dis-
advantaged black women). It is a set relational
perspective, more precisely with a focus on
set intersections to explain social phenomena.

This chapter begins with a short back-
ground of set theory and the different types
of sets that are used in the social sciences.
It presents the most important set opera-
tions that are commonly used in the math-
ematical framework behind a set theoretical
methodology, and it shows how to formulate
hypotheses using sets and exemplifies how
to calculate set membership scores via the
different calibration methods. Finally, it pre-
sents important concepts related to necessity
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and sufficiency and ends with a discussion
about how to apply set theory in Qualitative
Comparative Analysis (QCA).

SHORT BACKGROUND OF SET
THEORY

Formally initiated by philosopher and math-
ematician Georg Cantor at the end of the
19th century (Dauben, 1979), classical set
theory became part of the standard founda-
tion of modern mathematics, well suited for
the treatment of numbers (Pinter, 2014).
Elementary mathematics is embedded with
notions such as the set of real numbers, or the
set of natural numbers, and formal demon-
strations almost always employ sets and their
elements as inherent, prerequisite properties
of a mathematical problem.

It is nowadays called the naive set theory
(Halmos, 1974), and was later extended to
other versions, but the basic properties pre-
vailed. A set can be defined as a collection of
objects that share a common property. If an
element x is a member of a set A, it is written
as x € A, and if it is not a member of that set,
it is written as x ¢ A. This is the very essence
of what is called binary crisp sets, where
objects are either in or out of a set.

For any object, it can be answered with ‘yes’
if it is inside the set and ‘no’ if it is not. There
are only two possible truth values in this ver-
sion: 1 (true) and O (false) — a country is either
in, or outside the EU, a law is either passed or
not passed, an event either happens or does not
happen, etc. It has certain roots into Leibniz’s
binary mathematics from the beginning of the
18th century (Aiton, 1985), later formalized
into a special system of logics and mathemat-
ics called Boolean algebra, to honor George
Boole’s work in the mid 19th century.

In formal notation, a membership function
can be defined to attribute these two values:

0 if xgA
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It is perhaps worth mentioning that the work of
all these people was influenced by the
Aristotelian logic, a bivalent system based on
three principles (laws of thought): the principle
of identity, the principle of non-contradiction,
and the principle of excluded middle. A
single truth value could be assigned for any
proposition (either true, or false), but this was
only possible for past events. No truth value
could be assigned to a proposition referring
to the future, since a future event has not yet
happened. Future events can be treated deter-
ministically (what is going to be, is going to
be) or influenced by peoples’ free will (we
decide what is going to be), leading to a para-
dox formulated by Aristotle himself.

A solution to this problem was proposed
by the Polish mathematician Lukasiewicz
(1970), who created a system of logic at the
beginning of the 20th century that extends
the classical bivalent philosophy. His system
(denoted by L.;) presents not just two but three
truth values:

false
undetermined (neither

0

=1 =

Hal)= 2  false nor true, or partially true)
1

true

Lukasiewicz’s system (using a finite number
of values) was eventually generalized to
multivalent systems with n = v — 1 values,
obtained through a uniform division of the
interval [0, 1]:
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While some phenomena are inherently bivalent
(an element is either in, or out of a set), there are
situations where two values are unable to
describe the whole picture. A social problem is
not necessarily solved or unsolved but can be
more or less dealt with. A country is not simply
rich or poor, but it can be more or less included
in the set of rich countries. There is a certain
degree of uncertainty regarding the truth value,
which was modeled in the middle of the 20th



SET THEORETIC METHODS

century by another great mathematician who
laid out the foundations of the fuzzy sets
(Zadeh, 1965). These types of sets have a con-
tinuous (infinite) number of membership
values, in the interval bounded by 0 (completely
out of the set) to 1 (completely in the set).

SET OPERATIONS

Set operations are mathematical transforma-
tions that reflect the logical relations between
sets to reflect various configurations that
involve intersections, unions, and/or nega-
tions. The simplest way to think about these
operations is an analogy using basic mathe-
matical algebra: addition, subtraction, multi-
plication, and division are all very simple —
but they are essential operations to build upon.
In set theory, there are essentially three main
operations that are used extensively in the set
theoretical research and comparative analysis:
set intersection, set union, and set negation.

These operations perform differently for
crisp and fuzzy sets, but the fuzzy version is
more general and can be applied to crisp situ-
ations as well.

Set Intersection (Logical AND)

In the crisp version, the goal of this operation
is to find the common elements of two sets. A
truth value is involved, that is, it is assigned a
‘true’ value if the element is common and a
‘false’ if otherwise. Out of the four possible
combinations of true/false values in Table
57.1 for the membership in the two sets, only
one is assigned a ‘true’ value for the intersec-
tion, where both individual values are true.

This is a called a ‘conjunction’, meaning
the logical AND expression is true only when
both sets are (conjunctively) true. It is usually
denoted using the ‘"’ or multiplication *~’
signs.

The fuzzy version of the set intersection
formula is obtained by calculating the mini-
mum between two (or more) values:
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AN B=min(A,B) (1)

As the minimum between 0 (false) and any
other truth value is always 0, this formula
holds for the data from Table 57.1, where a
minimum equal to 1 (true) is obtained only
when both values are equal to 1.

Set Union (Logical OR)

The counterpart of the set intersection is the
set union, used to form larger and larger sets
by pulling together all elements from all sets.
In the crisp sets version, the result of the
union operation is true if the element is part
of at least one of the sets. Contrary to
set intersection, the only possible way to
have a false truth value is the situation where
an object is not an element of any of the
(two) sets:

The union of two sets is called a ‘disjunc-
tion’ and it is usually denoted with the ‘U’
or ‘+ signs, and the later should not be con-
fused with the arithmetic addition.

The fuzzy version of this operation is
exactly the opposite of the set intersection,
by calculating the maximum between two
(or more) values:

AU B=max(A,B) ()

Table 57.1 Set intersection for crisp sets

A B

0 AND 0 = 0
0 AND 1 = 0
1 AND 0 = 0
1 AND 1 = 1

Table 57.2 Set union for crisp sets

A B

0 OR 0 = 0
0 OR 1 = 1
1 OR 0 = 1
1 OR 1 = 1
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Table 57.3 Set negation for crisp sets

A
NOT 0 = 1
NOT 1 = 0
Set Negation

Set negation is a fundamental operation in set
theory, consisting of finding the complement
of a set, A, from a universe, U (which is a
different set of its own, formed by the ele-
ments of U that are not in A). It is many times
denoted with the ‘~’ or ‘=’ signs, and some-
times (especially in programming) with the
exclamation sign !’

Negating multivalue crisp sets involves
taking all elements that are not equal to a
specific value. It is still a binary crisp opera-
tion, first by coercing the multivalue set into
a binary crisp one and then by negating the
resulting values.

Negation is a unary operation, and its
fuzzy version is a simple subtraction from 1:

~A=1-A 3)

The importance of set negation will be
revealed later, especially when comparing the
quantitative methods with the set theoretical
ones, to reveal a certain asymmetry that is
specific to sets, with a methodological effort
to explain both the presence and the negation
(its absence) of a certain phenomenon.

FORMULATING HYPOTHESES
USING SETS

There are multiple ways to conceptualize,
measure, and hypothesize social and political
phenomena. Previous chapters from this
book present several such approaches, from
the quantitative types centered on variables
to qualitative methods focused on cases. The
quantitative approach relies on very precise
statistical properties stemming from large
samples, and it describes the net effect of
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each independent variable on the outcome
(the dependent variable), controlling for all
other variables in the model. It is a relatively
straightforward, albeit with specialized sta-
tistical language that is extensively used in
quantitative research, however, it is not the
most common language to formulate scien-
tific hypotheses.

Hsieh (1980), Novak (1991), Arfi (2010),
and even Zadeh (1983) himself have shown
how the set theory, and especially the fuzzy
sets, can be related to the natural language.
Moreover, and contrary to most common
expectations, scientific hypotheses do not
usually mention the specific net effects of
various independent variables, instead they
seem very compatible with the language of
sets, much like the natural language.

For instance, hypothesizing that demo-
cratic countries do not go to war with each
other (Babst, 1964) can be naturally trans-
lated into sets. The elements are countries,
and there are two sets involved: the set of
democratic countries, and the set of countries
that do not go to war with each other. It is the
type of hypothesis that can be best expressed
in terms of sufficiency and subset relation,
but for the moment, it should suffice to state
that it is a concomitant membership of the
two sets: those countries that are included
in the set of democratic countries are also
included in the set of countries that do not go
to war with each other.

The same type of language can be applied
to another common type of hypothesis in an
if-then statement, for instance: ‘if a student
passes the final exam, then he or she gradu-
ates’. Here, too, it is about two sets: the set of
students who pass the final exam, and the set
of students who graduate, membership in the
first guarantees membership in the second.

It seems natural to specify such hypoth-
eses in terms of set language, both in fuzzy
sets form (more or less democratic countries)
and even binary crisp form (either graduate,
or not). Scientific thinking, at least in the
social and political sciences, is a constant
interplay between abstractization and exact
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measurement: we first start by specifying
the (pre)conditions that make a certain out-
come possible, and only then do we measure
the exact values for each such condition or
variable.

A statement such as: ‘welfare is education
and health’ does not mention any specific
values of the education, or of the health, that
produce the welfare. This is but one among
many possible causal recipes (in the vein of
the welfare typologies contributed by Esping-
Andersen, 1990) where only the ingredients
(education and health) are mentioned with-
out specifying the exact net effects that are
needed to produce welfare. It is entirely pos-
sible to assign precise mathematical num-
bers to sets (more exactly, to set membership
scores), which is the topic of the next section,
but formulating hypotheses is more a matter
of specifying abstract concepts (similar to
sets) and less about exact values for each.

Using a different perspective on the rela-
tion between fuzzy sets and natural language,
George Lakoff rejects the notion that natural
language can be perfectly mapped over the
set theory (Ramzipoor, 2014). He also criti-
cizes Charles Ragin’s approach that assigns
membership scores (presented in the next
section about set calibration), based on his
expertise combining linguistics and cognitive
science. More recently, Mendel and Korjani
(2018) propose a new method using the
Type-2 fuzzy sets.

The whole debate is extremely interesting,
for social science concepts have a dual nature
stemming from both linguistics and theoreti-
cal corpus, but it is by now evident that set
theory is well established in social and politi-
cal research. Conceptual thinking has a long
tradition in sociology, with Max Weber’s
ideal types being similar to set theoretic con-
cepts that play a central role in comparative
analysis. In fact, the whole process of concept
formation is embedded with the language of
set theory (Mahoney, 1980; Goertz, 2006b;
Schneider and Wagemann, 2012).

Despite the predominance of the quan-
titative methods in the social and political
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sciences, there are situations where statistical
analyses are impossible (mainly due to a very
small number of cases) and, most impor-
tantly, where the use of set theory is actually
more appropriate, for both formulating and
testing theories.

SET CALIBRATION

In the natural sciences, assigning member-
ship scores to sets is a straightforward proce-
dure. Objects have physical properties that
can be measured and transformed into such
membership scores. In the social and politi-
cal sciences, the situation is much more
complex. These sciences deal with highly
complex phenomena that can only be con-
ceptualized at a very abstract level. They do
not exist in the physical reality and do not
have visible properties to measure directly.

Concepts are very abstract things, and
their measurement is even more complex: it
depends on theory, which determines their
definition which, in turn, has a direct effect
over their operationalization which has
an influence on constructing the research
instrument — only then can some measure-
ments be collected.

Each of these stages require highly special-
ized training involving years (sometimes a life-
time) of practice before mastering the activity.
Theoreticians are rare, or at least those who
have a real impact over the research praxis of
the entire academic community. Most research-
ers follow a handful of theories that attempt to
explain the social and political reality. Each
such theory should be ideally reflected into a
clear definition of the abstract concept.

Based on the definition, the process of
operationalization is yet another very complex
step towards obtaining some kind of numeri-
cal measurements about the concept. It is
based on the idea that, given the impossibility
of directly measuring the concept, researchers
can only resort to measuring its effect over the
observable reality. For instance, we cannot tell
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how altruistic a person is unless we observe
how the person behaves in certain situations
related to altruism. There are multiple ways
for a person to manifest this abstract concept,
and the operationalization is a process that
transforms a definition into measurable indi-
cators, usually via some other abstract dimen-
sions and subdimensions of the concept.

Finally, obtaining numerical scores based
on the indicators from the operationaliza-
tion phase is yet another complex activity.
There are multiple ways to measure (count-
ing only the traditional four levels of meas-
urement: nominal, ordinal, interval, and ratio,
but there are many others), and the process of
constructing the research instrument, based
on the chosen level of measurement for each
indicator, is an art. It is especially complex
as the concepts should also be equivalent in
different cultures, and huge efforts are being
spent to ensure the compatibility between the
research instruments from different languages
(translation being a very sensitive activity).

The entire process ends up with some
numerical measurements for each indicator,
and a final task to aggregate all these numbers
to a single composite measure that should be
large if the concept is strong, and small if
the concept is weak. In the above example,
highly altruistic people should be allocated
large numbers, while unconcerned people
should be allocated low numbers, both on a
certain numerical scale.

In set theory, calibration is the process of
transforming these (raw) numbers into set
membership scores, such that a completely
altruistic person should receive a value of 1,
while a non-altruistic person should receive a
value of 0. This process is far from straight-
forward, even for the natural sciences.

Describing the procedure, Ragin (2008)
makes a distinction between ‘calibration’ and
‘measurement’ processes and exemplifies
with temperature as it is a directly measur-
able physical property. While exact tempera-
tures can be obtained from absolute zero to
millions of degrees, no such procedure would
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even be able to automatically determine what
is ‘hot” and what is ‘cold’. These are human
interpreted concepts and need to be associ-
ated with some subjective numerical anchors
(thresholds). On the Celsius scale, 0 degrees
is usually associated with cold, while 100
degrees is usually associated with very hot,
and these numbers are not picked at random.
They correspond to the points where the
water changes states: to ice at 0 degrees and
to steam at 100 degrees, when the water boils.

The choice of thresholds is very important,
for it determines the point where something
is completely out of a set (for instance at 0
degrees, the ice is completely out of the set
of hot matter) and the point where something
is completely inside the set (at 100 degrees,
steam is completely inside the set of hot mat-
ter). A third threshold is also employed called
the ‘crossover’: the point of maximum ambi-
guity where it is impossible to determine
whether something is more in than out of a
set, corresponding to the set membership
score of 0.5.

The set of thresholds (exclusion, crosso-
ver, and inclusion) is not universal, even
for the same concept. A ‘tall’ person means
one thing in countries like Norway and
Netherlands, where the average male height
is more than 1.8 m, and another thing in
countries like Indonesia and Bolivia, where
the average is about 1.6 m. It is the concept
that matters — not its exact measurement —
therefore, different thresholds need to be
used in different cultural contexts, depending
on the local perception.

Traditionally, there are two types of cali-
brations for each type of sets, crisp and fuzzy.
Calibrating to crisp sets is essentially a mat-
ter of recoding the raw data and establishing
a certain number of thresholds for each value
of the calibrated set. When binary crisp sets
are intended to be obtained, a single thresh-
old is needed to divide the raw values in two
categories: those below the threshold will be
allocated a value of 0 (out of the set) and for
those above the threshold, a value of 1 (in the
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set). When multivalue crisp sets are intended,
there will be two thresholds to divide into
three categories, and so on. The general for-
mula for the number of thresholds is the num-
ber of values minus 1.

Even for this (crude) type of recoding,
the values of the thresholds should not be
mechanically determined. A statistician will
likely divide the values using the median,
which would, in many cases, be a mistake. It
is not the number of cases that should deter-
mine the value of the threshold, but rather the
meaning of the concept and the expert’s inti-
mate knowledge about which cases belong to
which category.

For instance, there will be a certain value
of the threshold to divide countries’ GDP in
the set of ‘developed countries’ and a differ-
ent value of the threshold for the set of ‘very
developed countries’. The exact value should
be determined only after an inspection of the
distribution of GDP values, especially if they
are not clearly clustered. In such a situation, the
researcher’s experience should act as a guide
in establishing the best threshold value that
would correctly separate different countries
in different categories, even if the difference
is small. The whole of this process should be
thoroughly described in a dedicated methodo-
logical section, with strong theoretical justifi-
cations for the chosen value of the threshold.

Calibrating to fuzzy sets is more challeng-
ing and, at the same time, more interesting
because there are multiple ways to obtain
fuzzy membership scores from the same
raw numerical data. The most widely used is
called the ‘direct method’, first described by
Ragin (2000). It uses the logistical function to
allocate membership scores, using the exclu-
sion, cross-over, and inclusion thresholds.

Table 57.4 below displays the two relevant
columns extracted from Ragin’s book, the
first showing the national income in US dol-
lars and the second showing the degree of
membership (the calibrated counterparts of
the national income) into the set of developed
countries.
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Table 57.4 Per capita income (INC), calibrated
to fuzzy sets membership scores (fsMS)

INC fsMS
Switzerland 40,110 1.00
United States 34,400 1.00
Netherlands 25,200 0.98
Finland 24,920 0.98
Australia 20,060 0.95
Israel 17,090 0.92
Spain 15,320 0.89
New Zealand 13,680 0.85
Cyprus 11,720 0.79
Greece 11,290 0.78
Portugal 10,940 0.77
Korea, Rep. 9,800 0.72
Argentina 7,470 0.62
Hungary 4,670 0.40
Venezuela 4,100 0.25
Estonia 4,070 0.25
Panama 3,740 0.18
Mauritius 3,690 0.17
Brazil 3,590 0.16
Turkey 2,980 0.08
Bolivia 1,000 0.01
Cote d'lvoire 650 0.01
Senegal 450 0.00
Burundi 110 0.00

At the top of the list, Switzerland and the
United States are highly developed countries,
which explains their full membership score of
1, while Senegal and Burundi, with national
incomes of 450 USD and 110 USD respec-
tively, are too poor to have any membership
whatsoever in the set of developed countries.

What threshold values best describe this
set, and how are the membership values cal-
culated? A quick quantitative solution would
be to calculate the ratio of every other coun-
try from the income of Switzerland, the rich-
est country in that data.

Aside from the fact such a method is
mechanical and data driven, it would imme-
diately become obvious that, for instance, the
Netherlands (which currently has an almost
full inclusion of 0.98 in the set of developed
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Figure 57.1 Calibration in the set of devel-
oped countries

countries) would have a ratio equal to 0.628,
which does not seem to accurately reflect
our knowledge. Likewise, a median value of
8,635 USD would leave Argentina more out
of the set than more in, and the average of
11,294 USD is even more misleading, leav-
ing Greece more out than in.

Ragin started by first deciding the crosso-
ver threshold at a value of 5,000 USD, which
is the point of maximum ambiguity about a
country being in more in than more out of the
set of developed countries. He then applied
some mathematical calculations based on the
logistic function and the associated log odds,
arriving at a full inclusion score of 20,000
USD (corresponding to a membership score
of at least 0.95 and a log odds of membership
of at least +3) and a full exclusion score of
2,500 USD (corresponding to a membership
score of at most 0.05 and a log odds of mem-
bership lower than -3).

Employing the logistic function, the gener-
ated set membership scores follow the familiar
increasing S shape displayed in Figure 57.1,
but this function is only one among many
other possible ones to perform calibration.
Linear mathematical transformations are also
possible, such as the one from the Equation (4),
as extracted from Dusa (2019: 84):
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0 ifx <e,

(e —xY .

E - ife<x<c, 4
dm, = ¢ ‘C . )

1—1(1. —xj ifc<x<i,

2\i — ¢

1 if x >i.

where:

e is the threshold for full exclusion

c is the crossover

i is the threshold for full inclusion

x is the raw value to be calibrated

b determines the shape below the crossover
(linear when b = 1 and curved when b > 1)

e a determines the shape above the crossover
(linear when a = 1 and curved when a > 1)

The calibration functions in Figure 57.2
refer to the calibration of 100 randomly
selected heights ranging from 150 cm to 200
cm. These values are calibrated in the set of
‘tall people’ (the linear increasing function that
could act as a replacement for the logistical S
shape) as well as in the set of ‘average height
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Figure 57.2 Other possible calibration
functions
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people’ (with a triangular shape, and also with
a trapezoidal shape). This is an example that
shows how the calibrated values depend on the
conceptual meaning of the calibrated set. All
shapes refer to people’s heights and all use the
exact same raw values, but the meaning is dif-
ferent for ‘average height’ and for ‘tall” people.

The set of three threshold values (155 cm
for full exclusion, 175 cm for the crossover,
and 195 cm for full inclusion) can be used
only for the increasing linear that approxi-
mates an S shape for the set of ‘tall’ people.
The other linear functions that approximate
a bell shape (for the set of ‘average height’
people) are more challenging, and need a set
of six values for the thresholds (three for the
first part that increases towards the middle,
and the other three for the second part that
decreases from the middle towards the higher
heights). There are two full exclusion thresh-
olds, two crossover values, and, finally, two
full inclusion thresholds (that coincide for the
triangular shape), with the calibrated values
being obtained via the mathematical transfor-
mations from Equation (5):

0 ifx<e,

1 b

a2 ife, <x<c,,

2e — ¢
(i -x) . .

1——| - ife, <x<i,
2\i, = ¢

dm, =1 1 ifi <x<i, ©

(i —xY

1-= .12 al ifi, <x<c,,
2\i, — ¢,

ifc, <x<e,,

0 ifx>e,.

Apart from the direct method, Ragin also
presented an ‘indirect’ one in order to obtain
fuzzy membership scores from interval level
raw data. In this method, no qualitative
anchors (thresholds) need to be specified in
advance, but, rather, it involves creating an
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artificial dependent variable where each case
is allocated a certain fuzzy membership cat-
egory from O to 1 (usually six, an even
number to avoid the point of maximum ambi-
guity 0.5), then performs a (quasi)binomial
logistic regression using a fractional polyno-
mial equation with the raw values as an inde-
pendent variable against the newly formed
dependent variable containing the fuzzy
membership categories (for more details, see
Dusa, 2019: 92).

A different type of calibration is applied
for categorical causal conditions (for instance,
containing values from a response Likert type
scale). It is not possible to determine any thresh-
olds because the variationis extremely small and
data can sometimes be severely skewed, which
limits the variation even more. For the same
reasons, no regression equation can be applied
with the indirect method, since it assumes at
least the independent variable to be metric.

A possible solution to this problem is
to manually allocate fuzzy membership
scores for each category (the so-called
‘direct assignment’ method), introduced by
Verkuilen (2005) who also criticized it for
containing bias due to researcher’s subjec-
tivity. Verkuilen mentions a possibly better
solution, by employing the Totally Fuzzy and
Relative (TFR) method (Cheli and Lemmi,
1995), making use of the empirical cumula-
tive distribution function of the observed data
E, then calculating the fraction between the
distance from each CDF value E(x) to the
CDF of the first value from the Likert scale
E(1), and the distance from 1 (the maximum
possible fuzzy score) to the same E(1):

TFR = max (OMJ 6)

1-EQ)

Calibration is a very important topic in set
theoretical methods, as many of the subse-
quent results depend on this operation. It
should not be a mechanical process, but
rather an informed activity where the
researcher should present the methodological
reasons that led to one method or another.
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SET MEMBERSHIP SCORES VS.
PROBABILITIES

Despite this topic being discussed numerous
times before (Dubois and Prade, 1989;
Kosko, 1990; Zadeh, 1995; Ragin, 2008;
Schneider and Wagemann, 2012), and despite
attempts to combine set theory and statistics
(Heylen and Nachtegael, 2013), set member-
ship scores and probabilities can still be
confused as both range from O to 1 and, at a
first glance, seem very similar.

Before delving into the formal difference,
consider the following example involving a
potentially hot stove. If the stove has a 1%
probability of being very hot, there is still a
small (but real) chance to get severely burned
when touching it. However, if we say the
stove has a 1% inclusion in the set of hot
objects, the stove can be safely touched with-
out any risk of getting burned.

Ragin’s example with the glass of water
has the same interpretation. If there is a 1%
probability the glass will contain a deadly
poison, there is a small but definite chance
of dying after drinking that water. But if the
glass has a 1% inclusion in the set of poi-
sonous drinks, there is absolutely no risk
of dying.

Intuitive as they may seem, these two
examples still don’t explain the fundamental
difference. At the formal level, the probabil-
ity has to obey the Kolmogorov axioms:

o the probability of an event that is certain is equal
to 1: P(C) =1

o the probability of an impossible event is equal to
0:P(@)=0

e if two events do not overlap (A N B = &), then
P(A + B) = P(A) + P(B)

The probability can essentially be interpreted
as a relative frequency obtained from an infi-
nite repetition of an experiment. It is a fre-
quentist statistic (based on what is called a
frequentist approach), where the conclusions
are drawn from the relative proportions in the
data.
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However, frequencies can only be com-
puted for categorical variables, in this situa-
tion: for events either happening or not. To
calculate probabilities (relative frequencies)
there are only two possible values for the
event: 1 (true, happening) or O (false, not hap-
pening). The first section already presented
the different types of sets, and this corre-
sponds to the definition of a binary crisp set.

Therefore, the meaning of probability is
necessarily related to crisp sets, while mem-
bership scores are related to fuzzy sets. They
simply refer to different things, given that
crisp sets are only particular cases of fuzzy
sets. Set membership scores refer to vari-
ous degrees of membership to a set, they are
related to the uncertainty about set member-
ship that cannot be computed the same as a
probability because the set itself is not crisp,
but fuzzy.

When flipping a coin, there are only two
possible outcomes (heads or tails) and an
exact probability of occurrence for each can
be computed by flipping the coin numerous
times. These are clear-cut categories (either
heads or tails), but not all concepts are so
clear. Whether a person is ‘young’ is a mat-
ter of uncertainty, and every person can be
included (more, or less) in the set of young
people. Same with ‘smart’, ‘healthy’, etc., all
of which cannot be determined unequivocally.

There are situations where probabilities
and fuzzy sets can be combined (Singpurwalla
and Booker, 2004; Demey et al., 2017), espe-
cially with Bayesian probabilities (Mahoney,
2016; Barrenechea and Mahoney, 2017;
Fairfield and Charman, 2017) in conjunction
with process tracing, but these two concepts
do not completely overlap. In the words of
Zadeh (1995) himself, they are ‘complemen-
tary rather than competitive’.

POLARITY AND ASYMMETRY

There is an even deeper layer of understand-
ing that needs to be uncovered with respect to
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probabilities and fuzzy sets. Describing
probability, Kosko (1994: 32) shows that it
works with bivalent sets only (an event either
happens or it does not happen), and another
important difference refers to how a set
relates to its negation.

In probability theory, A N ~A = &, and
A U ~A = 1. For fuzzy sets, it turns out that
AN~A#0,and A U ~A = 1. These inequali-
ties (especially the first one) essentially entail
that objects can be part of both a set and its
negation, and the union of the two sets might
not always be equal to the universe.

This has deep implications over how we
relate to events, their negation, and the com-
mon misperception of bipolarity. Sets are
unipolar, therefore a bipolar measurement
scale (for instance, a Likert type response
scale) cannot be easily accommodated with
a single set.

In a bipolar space, ‘good’ is the opposite
of ‘bad’; but a ‘not bad’ thing is not precisely
the same as a ‘good’ thing: it is just not bad.
Same with ‘ugly’ vs. ‘beautiful’: if a thing is
not ugly, that does not mean it is necessar-
ily beautiful, or, the other way around, some-
thing that is not beautiful is not necessarily
ugly. Bauer et al. (2014) encountered similar
difficulties in evaluating a bipolar scale with
left-right political attitudes, analyzing the
vagueness of the social science concepts in
applied survey research.

Things, or people, can have membership
scores of more than 0.5 in both a set and its
negation. A person can be both happy and
unhappy at the same time, therefore translat-
ing a bipolar scale into a single set is diffi-
cult, if not impossible. There should be two
sets, first for the happy persons and the sec-
ond for the unhappy ones, and a person can
be allocated membership scores in both, such
that the sum of the two scores can exceed 1
(something impossible with probabilities).

The set negation leads to another point
of misunderstanding between quantitative
statistics (especially the correlation-based
techniques, for instance the regression anal-
ysis) and set theoretic methods. Numerous
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articles have been written comparing empiri-
cal results (Katz et al., 2005; Grendstad,
2007; Fujita, 2009; Grofman and Schneider,
2009; Woodside, 2014), pointing to the defi-
ciencies of regression techniques (Pennings,
2003; Marx and Soares, 2015), criticizing
fuzzy sets (Seawright, 2005; Paine, 2015;
Munck, 2016), and revealing the advantages
of fuzzy sets (Cooper and Glaesser, 2010),
or, more recently, focusing on the integration
and complementarity between the two meth-
ods (Skaaning, 2007; Mahoney, 2010; Fiss
et al., 2013; Radaelli and Wagemann, 2019).

The sheer amount of written publications
suggest at least a couple of things. First, that
set theoretic methods are increasingly used in
a field traditionally dominated by the quan-
titative analysis, and second, there is a lot of
potential for these methods to be confused
(despite the obvious differences) as they both
refer to explanatory causal models for a given
phenomenon.

Correlation-based techniques assume an
ideal linear relation between the independent
and dependent variables. When high values
of the dependent variable (that can be inter-
preted as the ‘presence’ of the outcome, in
set theory) are explained by high values of
the independent variable(s), then low values
of the dependent (‘absence’ of the outcome)
are necessarily explained by low values of the
independent variable(s).

By contrast, set theoretical methods do not
assume this kind of linearity. While the pres-
ence of the outcome can be explained by a
certain configuration of causal conditions, the
absence of the outcome can have a very dif-
ferent explanation, involving different causal
combinations. If welfare can be explained by
the combination of education and health, it is
perfectly possible for the absence of welfare
to be explained by different causes.

While the correlation-based analyses are
symmetric with respect to the dependent
variable, the set theoretic methods are char-
acterized by an asymmetric relation between
a set of causes and a certain outcome. This
is a fundamental ontological difference that
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separates the two analysis systems, which
should explain both why they are sometimes
confused, as well as why their results are
seemingly different.

NECESSITY AND SUFFICIENCY

Natural language abounds with expressions
containing the words ‘necessary’ and ‘suffi-
cient’. In trying to identify the most relevant
conditions that are associated with an outcome,
theorists often ask: what are the necessary con-
ditions for the outcome? (without which the
outcome cannot happen), or what conditions
are sufficient to trigger an event? (that, when
present, the event is guaranteed to happen).

The contrast between the correlational per-
spective and the set theoretic methods can be
further revealed by analyzing Figure 57.3. The
crosstable on the left side is a typical, minimal
representation of the quantitative statistical
perspective, focused on the perfect corre-
lation from the main diagonal. Everything
off the main diagonal is problematic and
decreases the coefficient of correlation.

The crosstable on the right side, however,
tells a different story. In the language of sta-
tistics, the 45 cases in the upper left quad-
rant potentially ruin the correlation, but they
make perfect sense from a set theoretical
point of view: since there are no cases in the
lower right quadrant, this crosstable tells the
story of X being a perfect subset of Y. The
‘problematic’ upper left quadrant simply says
there are cases where Y is present and X is

1 0 14 1 45 14
Y Y
0 38 0 0 38 0
0 1 0 1
X X

Figure 57.3 Correlation (left) and subset
sufficiency (right)
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absent — in other words, X does not cover
(does not ‘explain’) all of Y.

The zero cases in the lower right quadrant —
combined with the 14 cases in the upper right
quadrant — say there is no instance of X where
Y is absent, which means that X is completely
included in'Y (it is a subset of Y). Whenever X
happens, Y happens as well, that is to say X is
‘sufficient’ for Y (‘if X, then Y”).

This is a different type of language, a set
theoretical one, that is foreign to the traditional
quantitative analysis. Regression analysis and
the sufficiency analysis have the very same
purpose, to seek the relevant causal condi-
tions for a given phenomenon. However, when
inspecting for sufficiency, the focus is not the
main diagonal (correlation style) but rather on
the right side of the crosstable where X hap-
pens (where X is equal to 1).

This is naturally a very simplified exam-
ple using just two values for both X and Y.
Quantitative researchers would be right to
argue that, when the dependent variable is
binary, a logistic regression model is more
appropriate than a linear regression model.
However, set theoretical data need not neces-
sarily be crisp, they can also be fuzzy with a
larger variation between 0 and 1 — a cross-
table is not enough to represent the data.

At a closer inspection on Figure 57.4, the
situation is identical for fuzzy sets. The left
plot displays the characteristic ellipse shape
of the cloud, with a very positive correlation
between the independent and the dependent
variables. It does not really matter whether
the points are located above or below the
diagonal, as long as they are close.

The cloud of points from the right plot would
be considered problematic. Not only are the
points located far from the main diagonal (ide-
ally, the regression line), but they also display
inconstant variance (a phenomenon called
heteroskedasticity). However, this is not prob-
lematic for set theory: as long as the points are
located above the main diagonal (values of X
are always smaller than corresponding values
of Y), it is a perfect representation of a fuzzy
subset relation. In set theoretical language,
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Figure 57.4 Fuzzy correlation (left) and fuzzy subset sufficiency (right)

such a subset relation, it is also described as
perfectly ‘consistent’.

Not all subset relations are that perfect. In
fact, there can be situations where X can hap-
pen and Y is absent, without affecting the suf-
ficiency relation (too much). Just as there are
no countries with perfect democracies (they
are ‘more or less’ democratic), situations
with perfect sufficiency are also extremely
rare. When perfect sufficiency happens, it is
mainly the result of our calibration choice:
it can happen in crisp sets, but this is almost
never observed with fuzzy sets.

The concept of fuzziness teaches us that
conditions can be ‘more or less’ sufficient, just
as two sets can be more or less included one
into the other. The causal set should be ‘con-
sistent enough’ with (or ‘included enough’ in)
the outcome set, to be accepted as sufficient

The big question is how much of outcome
setY is explained by causal set X, a very com-
mon question in traditional statistics that is
usually answered with the R? coefficient in the
regression analysis. In set theory, this is a mat-
ter of coverage. There can be situations with
imperfect consistency but large coverage, and
perfect consistency but low coverage.

Out of the two situations in Figure 57.5, the
relation from the left plot is the most relevant.
Despite the imperfect consistency (inclusion),

Figure 57.5 Incomplete inclusion/large
coverage (left) and complete inclusion/low
coverage (right)

the causal condition X covers a lot of the cases
in the outcome Y, qualifying as a highly relevant
(albeit imperfect) sufficient condition forY.

In the plot from the right side, X is perfectly
consistent with Y but it covers only a very
small area, which means there are very many
cases in Y that are not explained by X, sug-
gesting we should search for more causal con-
ditions that explain the entire diversity of the
outcome’s presence. In such situations, X is
called sufficient but not necessary, an expres-
sion which is also described by the concept
of ‘equifinality’: the very same outcome can
be produced via multiple causal paths, just as
there are many roads that lead to the same city.

Inclusion and coverage can be precisely
measured, with the same formula being valid
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for both crisp and fuzzy sets. Equation (7)
calculates the consistency for sufficiency
(inclS), while Equation (8) calculates the
coverage for sufficiency (covS), where the
sufficiency relation is denoted by the forward
arrow sign X = Y:

_ Dmin(X, Y) )

X=y ZX

_ 2 min(X, Y) (8)

inclS

In the regression analysis, independent varia-
bles may be collinear, meaning they explain the
same part of the dependent variable’s variation.
This is usually detected with the contribution of
each independent variable to the model’s R?
coefficient: only those variables that contribute
a significant increase of the R? are preferred.

Similarly, in set theory, the causal condi-
tions have a so called ‘raw’ coverage and also
a ‘unique’ coverage. Their unique coverage
(covU) is the area from the outcome Y which
is solely covered by a certain causal condition,
as shown in Equation (9) and Figure 57.6.

~ Y min(Y, A)
TYY
_ 2min(Y, A, max(B,C, ...)

Y

covU

(€))

In Figure 57.6, the unique coverage of condi-
tion A can be computed as the area of Y cov-
ered by A, minus the intersection of A and B
(its area jointly covered by condition B). More
generally, minus the intersection between A
and the union of all other causal conditions
that cover the same area of Y covered by A.
Necessity and sufficiency are mirrored
concepts. While sufficiency is about the sub-
set relation of the causal condition within
the outcome set, necessity is the other way
around: the superset relation of the causal
condition over the outcome set. A causal
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Figure 57.6 Unique coverage of A (hashed
area)

condition is necessary ff it is a superset of
the outcome: when Y happens, X is always
present. When the outcome Y does not
occur in the absence of X, it means that X is
necessary.

The upper left quadrant in a 2 x 2 crossta-
ble should be empty (where Y = 1 and X =0),
and, correspondingly, the area above the
main diagonal in a fuzzy XY plot should also
be empty in order to determine necessity.

Mirrored scores for the consistency of neces-
sity (incIN, how much of Y is included in X),
as well as for the coverage of necessity (covh,
how much of X is covered by Y) can be calcu-
lated, as shown in Equations (10) and (11):

_Domin(X,Y)  (10)

Ry

. Y min(X, Y) (11)

When analyzing necessity, the most impor-
tant thing is to determine how relevant a
necessary condition is. Oxygen is a neces-
sary condition for a fire, but it is an irrelevant
necessary condition as oxygen can be found
everywhere, and in most situations where
oxygen is present, a fire is not observed. A
more important necessary condition would
be heat, and another necessary condition may
be a spark. Both of these are truly necessary
(hence relevant) to start a fire.

The relevance of a necessary condition is
revealed by the coverage score. If the out-
come Y covers only a very small area of the

incIN
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Figure 57.7 X as a trivial necessary condition for Y

causal condition, it is a sign that X might be
irrelevant.

Goertz (2006a) is a leading scholar in the
analysis of necessity, further differentiating
between irrelevant and trivial necessary condi-
tions. Irrelevance and triviality are somewhat
similar, and they are frequently used as syno-
nyms, but there is a subtle difference between
them. Triviality is a maximum of irrelevance,
to the point that not only the subset outcome Y
covers a very small area of the causal condi-
tion X, but the superset condition X becomes
so large that it fills the entire universe. When
trivial, the causal condition is omnipresent,
with no empirical evidence of its absence.

In the previous example, oxygen is an
irrelevant, but not exactly a trivial, necessary
condition for a fire, as there are many (in fact,
most) places in the Universe where oxygen
is absent. In the Euler/Venn diagram from
Figure 56.7, Y is completely consistent with
X but it covers a very small area. Moreover,
it can be noticed that X occupies the entire
universe represented by the rectangle: it is an
omnipresent necessary condition.

The same line of reasoning can be applied on
the XY plot from the right side, where the focus
on necessity is the area below the main diago-
nal, and X is trivial since all of its points are

located on the extreme right where X is always
equal to 1, and most of the points are located
in the lower half of the plot where Y is more
or less absent (below the crossover 0.5 point).

A condition becomes less and less trivial
(hence more and more relevant) when the
points move away from the extreme right,
where X is always equal to 1, towards the
main diagonal. Goertz proposed a measure
of triviality by simply measuring the dis-
tance between the fuzzy values and 1. Later,
Schneider and Wagemann (2012) advanced
Goertz’s work and proposed a measure called
Relevance of Necessity (RoN), that is the
current standard to complement the coverage
score for necessity:

2.1-X)
Y (1- min(X,Y))

RoN = (12)

The XY plots and Venn/Euler diagrams have
a couple of more interesting properties to
discuss. If points are located all over the plot,
there is no clear relationship between the
cause and the outcome. We expect the points
to be positioned either above the main diago-
nal (for sufficiency) or below (for necessity).
If that happens, it means that if a cause is
perfectly sufficient, it is usually not necessary
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and, conversely, if it is perfectly necessary, it
is usually not sufficient.

Ideally, we would like to find a causal condi-
tion that is both necessary and sufficient for an
outcome, thus having the greatest explanatory
power. At a first sight, that would seem impos-
sible since a causal set X cannot be a subset and
a superset of the outcome Y at the same time. It
may in fact happen when the two sets coincide:
the subset X covers 100% of the set Y.

In terms of XY plots, the points are located
neither above nor below the main diagonal.
When the two sets coincide, the points are
located exactly along the main diagonal,
which would also correspond to a (close to)
perfect correlation in the statistical tradition,
similar to the left plot from Figure 57.4.

However, such a perfect correlation is dif-
ficult to obtain in practice, and it would usually
mean we are not dealing with two different
concepts (for the cause and for the effect) but
with one and the same concept under two dif-
ferent measurements. No causal set is perfectly
correlated with the outcome, and, perhaps
more importantly, a single causal set is neither
necessary nor sufficient by itself. It is very rare
to obtain an explanatory model with a single
causal condition, a typical outcome being pro-
duced by various combinations of causes.

Causal factors combine in conjunction,
which in set theory is set intersections. Where
a single cause might not be (sufficiently)
included into an outcome set, an intersec-
tion with other condition(s) might be small
enough to fit.

The same thing happens for necessity, but
in reverse. If a single causal condition is not
big enough to qualify as a necessary superset
of the outcome, disjunctions (set unions) of
two or more causal conditions might eventu-
ally form a big enough superset to cover the
outcome. However, if conjunctions are easy
to interpret (the simultaneous presence of two
causal sets), disjunctions need to have theoreti-
cally valid interpretations, much like the quan-
titative researchers having to find a meaningful
interpretation for the latent constructs resulted
from the principal component analysis.
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More recent and interesting develop-
ments in the analysis of necessity include
the Necessary Condition Analysis (NCA) by
Dul (2016), while on sufficiency, Schneider
and Rohlfing (2016) bring important insights
in the cutting edge, so called Set Theoretic
Multi-Method Research (STMMR) which
is an entire topic on its own and deserves a
separate and more extended presentation.

SET THEORY AND THE QUALITATIVE
COMPARATIVE ANALYSIS

Having presented the background of set
theory, the stage is set to introduce a (third)
way to tackle research problems traditionally
approached through the qualitative and quan-
titative methods.

The trouble with quantitative research is
that it needs many cases (a large N) to make
the Central Limit Theorem work, and a typi-
cal political science research compares only
a handful of countries or events and does not
have that many cases. There are only 28 coun-
tries in the EU, and a comparative study on the
eastern European countries will have even less
cases. When studying very rare events such
as revolutions, Skocpol (1979) had only three
cases to work upon: France, Russia, and China.

It is difficult to argue that there is an
underlying, potentially infinite population of
‘possible’ such events to draw large samples
from, in order to justify the use of the quanti-
tative analysis, even with Monte Carlo simu-
lations for small samples. On the other side,
the qualitative analysis is very much case ori-
ented and produces perfect explanations for
all individual cases. This is often useful for
theory formation, but it is usually regarded as
too specific to have generalizable value.

With both sides having strong arguments to
defend one method or another in different situ-
ations, Ragin (1987) employed set theory and
Boolean algebra to import a methodology cre-
ated for electrical engineering (Quine, 1955;
McCluskey, 1956) into the social and political
sciences. He showed how, through a systematic
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Table 57.5 Boolean minimization example

A B Y

1 1 1
1 0 1

comparative analysis of all possible pairs of
cases, the relevant causal factors can be identi-
fied and the irrelevant ones eliminated. More
importantly, he showed how to identify the pat-
terns, or the combinations of causal conditions,
that are sufficient to produce an outcome.

The essence of the entire procedure can
be reduced to a process called Boolean mini-
mization, which was itself imported into the
electrical engineering from the canons of log-
ical induction formulated by J.S. Mill (1843).

The two expressions in Table 57.5 are equiv-
alent to AB + A~B, which can be simplified to
A alone since the condition B is redundant,
present in the first, and absent in the second:
A(B + ~B) = A. In such an example, B is said
to be ‘minimized’ (or eliminated), hence the
name of the Boolean minimization procedure.

Each case that is added to the analysis dis-
plays a certain combination (of presence or
absence) of causal conditions, and the algo-
rithm exhaustively compares all possible
pairs cases to first identify if they differ by
only one literal, then iteratively and progres-
sively minimize until nothing else can be
further simplified. The final product of this
procedure is the set of so-called ‘prime impli-
cants’, which are simpler (more parsimoni-
ous) but equivalent expressions to the initial,
empirically observed cases.

Since pairs of cases are compared, the
process is more qualitative than quantita-
tive, therefore the ‘Q’ in QCA stands for the
‘Qualitative’ Comparative Analysis. It has
absolutely nothing to do with traditional sta-
tistics, yet it employs a systematical and solid
mathematical algorithm such as the Boolean
minimization to identify the minimal con-
figurations of (relevant) causal conditions
which are sufficient to produce an outcome.
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Crisp sets are very attractive as they allow
one to map the empirically observed configu-
rations over a finite number of combinations
of presence/absence for the causal conditions
(equal to 1/, where [ is the number of levels for
each causal condition ¢ = 1 ... n). This finite
space is called a truth table, and it contains all
positive and negative observed configurations,
as well as those for which there is no empirical
information (called ‘remainders’).

However, it is precisely the ‘Boolean’
nature of the algorithm that attracted a lot
of criticism (Goldstone, 1997; Goldthorpe,
1997), since it suggests a very determinis-
tic view of reality (Lieberson, 1991) and, as
pointed many times before, most social phe-
nomena are not simply present or absent, but
somewhere in between.

The debate led to an upgrade of QCA from
Boolean to fuzzy sets (Ragin, 2000, 2008).
Instead of crisp values, each case has a mem-
bership score for each of the causal condition
sets. The challenge, that was also solved by
Ragin (2004), was to translate fuzzy mem-
bership scores to truth table crisp scores,
because the minimization process is Boolean.

In the fuzzy version, the truth table config-
urations act as the corners of a multidimen-
sional vector space where the set membership
scores play the role of fuzzy coordinates for
the position of each case. Figure 57.8 pre-
sents the simplest possible vector space with
two dimensions, and a case having two fuzzy
membership scores of 0.85 on the horizon-
tal and 0.18 on the vertical. For only two

01 11
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Figure 57.8 Bidimensional vector space
(left) and the corresponding truth table
(right)
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causal conditions, the truth table contains
2-2 = 4 rows, represented by the corners of
the square, and the case is located close to the
lower right corner 10 (that is, presence of the
first condition and absence of the second).

It is rather clear to which truth table con-
figuration does the case belong to in this
example, but it would be more difficult to
assess if the case were located close to the
middle of the vector space. Ragin’s proce-
dure uses the fuzzy coordinates of each case
to calculate consistency scores for each of the
corners and determines which corners are the
cases more consistent with (or closest to).

The consistency score of this case is the
set intersection between the first membership
score (0.85) and the negation of the second
(1 — 0.18 = 0.82), which is the fuzzy mini-
mum between 0.85 and 0.82, equal to 0.82.
Provided there is no fuzzy membership score
of exactly 0.5 (the point of maximum ambi-
guity), there is only one corner to which cases
have a higher than 0.5 consistency.

The corners of the vector space can be
interpreted as genuine ideal types in the
Weberian tradition, which an imperfect
fuzzy configuration is most similar to. Upon
determining where each case is ideally posi-
tioned in the truth table configurations, the
algorithm proceeds with the same Boolean
minimization procedure as in the crisp ver-
sion in order to identify minimally sufficient
configurations that are related to the presence
(or absence) of an outcome.

It is beyond the purpose of this chapter to
offer a complete presentation of the QCA
procedure with all its details. There are entire
books written for this purpose (Ragin, 2000,
2008; Rihoux and Ragin, 2009; Schneider
and Wagemann, 2012; Dusa, 2019), and the
interested reader is invited to consult the
relevant literature. The main purpose was
to reveal how the language of sets and the
Boolean algebra can be employed for social
and political research.

To conclude, set theoretic methods are
rather young compared with the long-
established quantitative tradition, but they
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already compensate through a sound and
precise mathematical procedure that uses set
relations (subsets and supersets) to identify
multiple conjunctural causation, where the
outcome can be produced via several (suffi-
cient) combinations of causal conditions.
Different to the strict statistical assumptions
in the quantitative analysis, the causal condi-
tions in QCA are not assumed to be independent
of each other. What matters is how they con-
junctively combine to form sufficient subsets
of the outcome, and their relevance in terms of
both coverage of the outcome and how well they
explain the empirically observed configurations.
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