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Sensitivity diagnostics has recently been put high on the agenda of methodological research into Qualitative

Comparative Analysis (QCA). Existing studies in this area rely on the technique of exhaustive enumeration,

and the majority of works examine the reactivity of QCA either only to alterations in discretionary parameter

values or only to data quality. In this article, we introduce the technique of combinatorial computation for

evaluating the interaction effects between two problems afflicting data quality and two discretionary par-

ameters on the stability of QCA reference solutions. In this connection, we challenge a hitherto unstated

assumption intrinsic to exhaustive enumeration, show that combinatorial computation permits the formula-

tion of general laws of sensitivity in QCA, and demonstrate that our technique is most efficient.

1 Introduction

The diffusion of Qualitative Comparative Analysis (QCA) throughout the social sciences continues
to be accompanied by evaluations of the methodological properties of this relatively new procedure
of causal inference.1 Besides questions about issues concerning counterfactual assumptions
(Schneider and Wagemann 2013; Baumgartner and Epple 2014; Baumgartner 2015), model
ambiguities (Thiem and Duşa 2013a; Thiem 2014c; Baumgartner and Thiem 2015b), relations to
regression and cluster analysis (Seawright 2005; Clark, Gilligan, and Golder 2006; Cooper and
Glaesser 2011b; Vis 2012; Paine 2015; Thiem, Baumgartner, and Bol 2015), hypothesis testing
(Braumoeller and Goertz 2000; Bol and Luppi 2013; Thiem 2014b; Braumoeller 2015), and
causal complexity (Baumgartner 2009, 2013; Thiem 2015), the sensitivity of QCA has long been
a topic of great interest to methodologists and applied users alike. For example, Goldthorpe
(1997a, 7) had already conjectured almost two decades ago that “[i]f, on account of error in the

Authors’ note: Supplementary materials for this article are available on the Political Analysis Web site (Thiem, Spöhel,
and Duşa 2015). Previous versions of this article have been presented at the 1st and 2nd International QCA Expert
Workshops, ETH Zurich, Switzerland. We thank Michael Baumgartner, Christian Rupietta, the participants at the
aforementioned workshops, the editors of Political Analysis, and the three reviewers for their helpful comments.
1QCA has become an umbrella term by now for a family of configurational comparative methods. It currently subsumes
four variants: crisp-set QCA, fuzzy-set QCA, multi-value QCA, and generalized-set QCA (Thiem 2014d).
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original data, or in its treatment, even a single case happens to be placed on the ‘wrong’ side of a
dichotomy, the analysis could well have a quite different outcome to that which would have been
reached in the absence of such error.”2

In response to these long-standing misgivings, several studies have recently begun to make
attempts at evaluating the sensitivity of QCA in a more systematic manner (Skaaning 2011; Hug
2013; Bowers 2014; Lucas and Szatrowski 2014; Seawright 2014; Krogslund, Choi, and Poertner
2015). Research designs, methodological quality, and substantive conclusions have varied widely,
but the modus operandi with respect to QCA’s assessment has always been the same. After all
solutions have been generated for a specific set or sets of artificial or empirical data under a
series of controlled alterations in certain parameter values, the share of the reference solution
among all identified solutions serves as a direct measure of how strongly the method reacts.

This article does not provide another sensitivity evaluation of QCA. Instead, its objective
consists in scrutinizing the modus operandi of existing evaluations, and to develop an alternative
approach. We call this new approach combinatorial computation.3 The rationale behind the intro-
duction of combinatorial computation is a set of three closely related observations with regard to
existing studies: first, a questionable background assumption has been introduced but was never
made explicit; second, a failure to identify mechanisms in the work flow of QCA that would have
made the formulation of general laws of sensitivity possible has resulted from the exclusive focus on
the mere syntactic structure of data-specific solutions; and third, the identification of final solutions
has been unnecessarily resource-intensive.

By determining how solutions behave functionally in response to certain problems of empirical
data analysis, we achieve three important goals with regard to the aforementioned observations:
first, analyses of the effects of different assumptions respecting alterations in specific parameter
values on the sensitivity of QCA are made possible; second, the formulation of general laws of
sensitivity permits researchers to test hypotheses about solution stability in QCA; and third, the
consumption of computational resources is drastically reduced to a tiny fraction of the conven-
tional approach, whereby new opportunities for future methodological research arise.

The article is structured as follows. In Section 2, we provide an overview of the relevant literature
and explain the research design in more detail. In Section 3, we motivate the development of a
combinatorial approach to sensitivity diagnostics in relation to the work flow of QCA, and intro-
duce all relevant theoretical concepts. Section 4 represents the main part, in which we derive the
functional relations between QCA reference solutions and measurement error, the loss of data,
respectively. We do so in relation to two different assumptions about the nature of these problems
of empirical data analysis, and argue that one of them is considerably more plausible than the
other. Section 5 concludes our study and identifies avenues for future research.

2 Research Design

Although evaluations of the sensitivity of QCA have become more systematical since Goldthorpe
(1997a,b), researchers continue to carry out exploratory analyses, which have not been comparable
across studies because they have drawn conclusions from specific data sets under disparate types of
alterations in different parameters. Based on the categorization scheme provided by Thiem (2014a,
640), a few works can be classified as analyzing sensitivity to alterations in input parameters—
aspects related to data quality (Hug 2013; Lucas and Szatrowski 2014) and the specification of the
factor frame (Lucas and Szatrowski 2014; Krogslund, Choi, and Poertner 2015). The majority,
however, deal with alterations in throughput parameters that are at the discretion of the researcher,
including membership functions (Thiem 2014a), calibration thresholds (Seawright 2005; Skaaning
2011; Schneider and Wagemann 2012; Glaesser and Cooper 2014; Lucas and Szatrowski 2014;
Krogslund, Choi, and Poertner 2015), inclusion cut-offs (Skaaning 2011; Schneider and Wagemann

2The performance of robustness tests with varying value assignments to contestable cases has long been common practice
in applied QCA research (cf. Griffin et al. 1991, 130; Coverdill and Finlay 1995, 475). The macro-sociological study by
Hicks, Misra, and Ng (1995, 341–2) is exemplary.

3We italicize concepts that are important to the content of this article at their first substantive appearance.
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2012; Krogslund, Choi, and Poertner 2015), and frequency cut-offs (Skaaning 2011; Lucas and
Szatrowski 2014; Krogslund, Choi, and Poertner 2015).4

While much progress has been achieved in analyzing the effects of missing data and measurement
error in other, more established methodological frameworks such as regression analysis (e.g.,
Wooldridge 2002, 70–81; Gelman and Hill 2007, 529–43), Hug (2013) presents the only serious
attempt so far with respect to QCA. Following Hug, our input parameters include measurement
error in the endogenous factor and the loss of data due to the list-wise deletion of cases. We also use
the same data set for the purpose of illustration, and employ crisp-set QCA. Besides ensuring
a cumulative generation of knowledge by continuity in basic design aspects, the advantage of
crisp-set QCA is that it has been more established, unlike fuzzy-set QCA, many of whose properties
are still controversially debated (e.g., Eliason and Stryker 2009; Cooper and Glaesser 2011a).
Contrary to Hug, however, we allow the two problems in the quality of data to interact with
fundamental parameters in QCA that are at the discretion of the analyst. We add the inclusion
cut-off and the frequency cut-off as two important throughput parameters so as to allow for the
possibility that the latter group of parameters amplifies or attenuates the effect of the former.
Moreover, we cover both the conservative solution type as well as the parsimonious one. So as
to set the stage for the remainder of this article, a brief recapitulation and discussion of Hug’s
(2013) study is in order.

Using the data set in Table 1, Hug first replicates the results from Grofman and Schneider (2009)
by identifying the conditions under which countries exhibit a generous welfare state.5 Among the
factors hypothesized to be associated with certain generosity levels of a welfare state (W: 1
generous, 0 not generous) are the strength of left parties (P: 1 strong, 0 not strong) and the
strength of unions (U: 1 strong, 0 not strong), the type of industrial system (C: 1 corporatist, 0

Table 1 Welfare state generosity among advanced industrial democratic countries

Block Country
Generosity of
welfare state (W)

Strength of
left parties (P)

Strength of
unions (U)

Type of
industrial
system (C)

Sociocultural
Homogeneity (S)

1 Austria 1 (0.72) 1 (0.70) 1 (0.64) 1 (0.83) 1 (0.67)
Denmark 1 (0.86) 1 (0.85) 1 (0.81) 1 (0.83) 1 (0.86)
Finland 1 (0.76) 1 (0.56) 1 (0.86) 1 (0.83) 1 (0.72)
Norway 1 (0.95) 1 (0.95) 1 (0.53) 1 (0.83) 1 (0.95)
Sweden 1 (0.98) 1 (0.98) 1 (1.00) 1 (0.95) 1 (0.70)

2 Ireland 1 (0.67) 0 (0.11) 1 (0.63) 1 (0.67) 1 (0.84)
3 Belgium 1 (0.79) 1 (0.54) 1 (0.84) 1 (0.83) 0 (0.29)
4 Australia 0 (0.26) 0 (0.25) 0 (0.40) 0 (0.17) 0 (0.25)

Canada 0 (0.26) 0 (0.00) 0 (0.06) 0 (0.05) 0 (0.10)
France 0 (0.57) 0 (0.12) 0 (0.10) 0 (0.33) 0 (0.31)
United States 0 (0.09) 0 (0.00) 0 (0.04) 0 (0.05) 0 (0.05)

5 Germany 0 (0.68) 0 (0.43) 0 (0.20) 1 (0.67) 0 (0.30)
The Netherlands 0 (0.69) 0 (0.33) 0 (0.17) 1 (0.83) 0 (0.27)
Switzerland 0 (0.53) 0 (0.34) 0 (0.13) 1 (0.67) 0 (0.10)

6 Japan 0 (0.52) 0 (0.00) 0 (0.04) 0 (0.33) 1 (0.95)
7 New Zealand 0 (0.56) 0 (0.40) 1 (0.54) 0 (0.17) 0 (0.15)

Notes: Original source (in brackets): Ragin (2000, 292, table 10.6); fuzzy sets dichotomized, Italy and United Kingdom dropped and coding
changes on W for France, Japan, New Zealand, and Switzerland introduced by Grofman and Schneider (2009, 663); coding typos on W for
Germany and the Netherlands by Hug (2013, 258).

4An overview of some of these issues with a different categorization scheme is provided by Maggetti and Levi-Faur
(2013). The concept of inclusion is synonymous with what is commonly known in QCA as consistency.

5This data set had originally been presented by Ragin (2000, 292). Afterward, it was deliberately modified a first time by
Grofman and Schneider (2009, 663) (variables dichotomized; Italy and the United Kingdom dropped; outcome values of
France, Japan, New Zealand, and Switzerland changed), and then accidentally a second time by Hug (2013, 258)
(coding typos for Germany and the Netherlands). Also note that Hug says he dropped Australia and Italy (p. 258),
but it was Italy and the United Kingdom.
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not corporatist), as well as the presence of sociocultural homogeneity (S: 1 yes, 0 no). The target
population is comprised of the set of advanced industrial democratic countries.6

The conservative solution for these data, S1, consists of a single model, m1, which is presented in
Table 2. It says that the conjunction of strong left parties, strong unions, and a corporatist indus-
trial system and the conjunction of strong unions, a corporatist industrial system, and sociocultural
homogeneity are alternative causal paths for the existence of a generous welfare state.7 Moreover,
these two paths are also necessary for the outcome. Whenever at least one of them changed or
disappeared, or when another path joined the model, the solution was classified by Hug as being
different from the reference solution.8

For analyzing the sensitivity of QCA, Hug implements the following procedure. In a first pair of
analyses, the volume of the data is reduced by deleting cases; in the second pair of analyses, the data
volume is held constant but the endogenous factor is corrupted. More precisely, in the first test
series, each of the 16

1

! "
¼ 16 cases in Table 1 is systematically deleted before the solution is

generated; in the second series, each of the 16
2

! "
¼ 120 possible pairs of cases is deleted; in the

third test series, the value on the endogenous factor for each of the 16 cases is systematically
corrupted from 1 to 0 and vice versa; and in the fourth series, the values on the endogenous
factor for each of the 120 possible pairs of cases are systematically corrupted from 1 to 0 and
vice versa.

Although no stochastic component is involved, Hug calls his approach “seemingly Monte Carlo
simulation” (p. 257).9 More appropriately, it is known as exhaustive enumeration or brute-force
method because all unique possibilities for changing a given number of parameter values in the
analysis of a set of outputs of interest are realized in a systematic and controlled way (cf. Nievergelt
2000). In the remainder of this article, we contrast the method of exhaustive enumeration, which
has also been applied in various variations by Krogslund, Choi, and Poertner (2015), Lucas and
Szatrowski (2014), and Skaaning (2011), with combinatorial computation to argue that the latter
outperforms the former in all relevant respects.

3 Preparatory Explanations and Definitions

In this section, we first spell out the succession of phases in QCA to motivate the introduction of
combinatorial computation. Subsequently, all concepts relevant to realizing this method mathem-
atically are defined.

3.1 Methods of Sensitivity Diagnostics and the Work Flow of QCA

So as to understand why we argue that combinatorial computation outperforms exhaustive enu-
meration and permits the formulation of general laws of sensitivity, it is expedient to begin by

Table 2 Solution details for outcome Wf1g

Outcome Path Inc Covr Covu Cases

Wf1g Pf1gUf1gCf1g 1.000 0.857 0.143 BE; AT, DK, FI, NO, SE
Uf1gCf1gSf1g 1.000 0.857 0.143 IE; AT, DK, FI, NO, SE

S1 m1 1.000 1.000

6We use curly-bracket notation instead of upper-/lowercase notation because it is unambiguous.
7We have used the package QCA 1.1-4 for the R environment to regenerate the solution (Thiem and Duşa 2013b,c; Duşa
and Thiem 2014; R Development Core Team 2014).

8Note that two different QCA models m1 and m2 derived from two different data sets !1 and !2 are compatible if the
causal claims entailed by m1 and m2 stand in a subset relation. This important fact has not been taken into consider-
ation by any of the evaluations cited above. Instead, different solutions have been treated as if they were incompatible.

9Generally, in a Monte Carlo simulation, n randomly changed data sets would be created, QCA would be run on each of
them, and the number of times x in which the reference solution was retained would be counted, with x/n representing
the estimate for the unknown probability of retaining the reference solution. Depending on the desired confidence level,
fewer or more analyses would have to be performed.
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situating either approach in the work flow of QCA, whose procedural protocol has three phases: the
transformation of the raw data into a truth table in Phase I; the minimization of the function
described by this truth table for constructing a prime implicant chart in Phase IIa; and the decom-
position of this chart into a set of all equally well-fitting models, called solution, in Phase IIb. Phases
IIa and IIb are usually treated as inextricable sub-phases of that stage in which all redundancies
are eliminated to yield causally interpretable models. The flow chart of this protocol is visualized in
Fig. 1.

For arriving at the truth table, one factor in the data must be declared the endogenous factor. All
other factors remain as exogenous factors. For each unique combination of levels across all these
exogenous factors—called a min-term—an output value is determined, based on the proposition that
the min-term is sufficient for that level of the endogenous factor which has been set as the outcome.
If a min-term has not been instantiated as often as required, it is classified as a remainder and
assigned the output value “?”; if it has been instantiated as often as required but the proposition
turns out to be false, it is classified as negative and receives the output value “0”; and if it has been
instantiated as often as required and the proposition turns out to be true, it is classified as positive
and assigned the output value “1”. Each truth table thus consists of a matrix of min-terms to which
a column of output values is appended. The truth table for the data set in Table 1 is presented in
Table 3. The last row of this table subsumes the nine remainders.

A truth table such as Table 3 provides the input to Phase II when minimization proper com-
mences. This process is usually associated with the Quine–McCluskey (QMC) algorithm (cf. Duşa
and Thiem 2015, 94–97).10 In Phase IIa of QMC, all redundant factors are eliminated by pairing
two positive min-terms, and subsequently their descendants, or a positive min-term with a remain-
der and their descendants if the parsimonious solution type is used. When elimination is no longer

Fig. 1 Flow chart of QCA, approaches to calculating retention probabilities of QCA reference solutions,
and resource intensity at each phase.

Table 3 Truth table for data in Table 1

Block P U C S OUT Cases

1 1 1 1 1 1 AT, DK, FI, NO, SE
2 0 1 1 1 1 IR
3 1 1 1 0 1 BE
4 0 0 0 0 0 AU, CA, FR, US
5 0 0 1 0 0 CH, DE, NL
6 0 0 0 1 0 JP
7 0 1 0 0 0 NZ
8–16 . . . . . . . . . . . . ? —

Note: OUT¼output value.

10Algorithms other than QMC are in use, but fs/QCA (Ragin and Davey 2014)—currently the most popular QCA
software by far—implements QMC with only minor modifications.
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possible, the surviving terms, called prime implicants, are set in relation to all positive min-terms in a
prime implicant chart. This chart is then decomposed to yield all minimally necessary sets of prime
implicants that cover the set of all positive min-terms.

For producing the conservative solution, QCA forces QMC to treat remainders as negative min-
terms. The model set generated by this particular solution type therefore stands in a one-to-one
relation with the set of positive min-terms. In other words, two truth tables based on the same data
lead to the same conservative solution set of models if, and only if, they have the same set of
positive min-terms.11 More generally, alterations in input parameters which lead to changes in the
data that do not affect the truth table will not affect the QCA solution, irrespective of the solution
type. Likewise, alterations in throughput parameters that do not affect the truth table will not affect
the QCA solution, irrespective of the solution type.

To arrive at the solution, exhaustive enumeration implements the full procedural protocol of
QCA, including the resource-intensive Phases IIa and IIb. However, as a set of models obtained for
a given set of data depends only on the truth table derived from those data, and in particular only
on the set of positive min-terms for the case of the conservative solution type, phases IIa and IIb
need not be executed if the goal is to find the probability to which such a reference solution will
remain unchanged. This observation is decisive, and it informs a combinatorial approach to sen-
sitivity diagnostics in QCA.

3.2 Definitions

While Section 3.1 sketched out the rationale behind an alternative to exhaustive enumeration, it is
expedient at this juncture to formalize all relevant concepts in order to realize such an alternative
mathematically. First, let ! denote a given data set, Td the truth table resulting from !, and
S ¼ fm1;m2; . . .;mjg the reference solution set of models derived from Td after Phase IIb. In
agreement with previous evaluation practice, we consider a solution S" as being different to
some reference solution S if the former is not identically equal with the latter. Furthermore, let
yS stand for the retention probability of S. For example, ! could be the data presented in Table 1,
Td the truth table in Table 3, and S the solution S1 in Table 2, with m1 being its sole element.

As S stands in a one-to-one relation with the set of positive min-terms in Td under the conser-
vative solution type, the retention probability yS is the probability that this set remains unchanged.
In the following, when we say that a min-term is included in S, we thus mean that it must be
positive in Td; when a min-term enters S, we mean that it changes from negative to positive; and
when it leaves S, it changes from positive to negative, or to a remainder.

We denote the number of cases (rows) in ! by n, the number of exogenous Boolean factors in ! by
k, the number of cases of min-term ‘ in ! that exhibit the outcome of interest, Ff1go , by c#‘ , and the
number of cases of min-term ‘ in ! that exhibit the negation of the outcome of interest, Ff0go , by c$‘ .
Ff1go and Ff0go are the two levels of the endogenous Boolean factor Fo. Applied to the concrete data
example in Table 1 again, n¼ 16 as there are 16 rows, k¼ 4 because P, U, C, and S are the
exogenous Boolean factors, and Wf1g represents the level of the endogenous factor W for which
the analysis is to be carried out. Accordingly, Wf0g is the negation of Wf1g and vice versa. Finally,
block 1 in Table 3 would be associated with ‘ ¼ 1, with c#1 ¼5 and c$1 ¼0 because this min-term
shows five cases of Wf1g but none of Wf0g.

The derivation of Td from ! also depends on two important throughput parameters. Let " denote
the inclusion cut-off that determines the ratio of cases of Ff1go to those of Ff0go below which some min-
term ‘ is not positive anymore, and let # denote the frequency cut-off that determines the bound of
observed cases of some min-term ‘, irrespective of their level on Fo, below which ‘ is classified as a
remainder.12 In addition, let m denote the number of min-terms in Td that are not remainders.13

11Note that not all computer programs for QCA identify the full model set of a solution, in consequence of which these
sets may not be the same even though truth tables are (Thiem and Duşa 2013a; Thiem 2014c; Baumgartner and Thiem
2015b).

120:5 < " % 1; # 2 N, and 1 % # % max1% ‘%m ðc#‘ þ c$‘ Þ; N being the set of all non-negative integers.
13Thus, m depends on ! as well as #, and m % 2k. If m ¼ 2k; Td contains no remainders and is said to be saturated.
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A min-term ‘ is thus included in S if, and only if, c#‘ þ c$‘ ) # and c#‘ ) "ðc
#
‘ þ c$‘ Þ. For

notational convenience, let A0 in Equation (1), A1 in Equation (2), and A? in Equation (3)
denote all pairs of integers that lead to negative min-terms, positive min-terms, and remainders,
respectively:

A0 ¼
def fðc#; c$Þ 2 N2j c#þ c$) # and c#< "ðc# þ c$Þg; ð1Þ

A1 ¼
def fðc#; c$Þ 2 N2j c#þ c$ ) # and c# ) "ðc# þ c$Þg; ð2Þ

A? ¼
def fðc#; c$Þ 2 N2j c#þ c$< #g: ð3Þ

A min-term ‘ is then included in S if, and only if, ðc#‘ ; c
$
‘ Þ 2 A1, and it leaves S as the result of

corrupting i cases with outcome Ff1go and j cases with outcome Ff0go if, and only if,
ðc#‘ * iþ j; c$‘ * jþ iÞ =2A1.

Generally, we call a change in the quality of ! as a result of measurement error through a
corruption on Fo or the loss of data through the deletion of cases from ! a perturbation. If a
method of sensitivity analysis generates perturbations independently of each other, we speak of
an independence-in-perturbation assumption (IPA). Conversely, if perturbations are not generated
independently of each other but are tied to a fixed number of cases ex ante, we speak of a depend-
ence-in-perturbation assumption (DPA). DPA has been the implicit background assumption in all
previous sensitivity evaluations that have used exhaustive enumeration. For example, in Hug
(2013), exactly one/two case/s out of sixteen was/were corrupted, and one/two case/s out of
sixteen was/were deleted.

4 Combinatorial Computation under DPA and IPA

In this section, we show how exhaustive enumeration could be replaced by combinatorial compu-
tation while maintaining DPA as the principal assumption about the dependencies between per-
turbations. However, we eventually criticize this assumption for lacking plausibility. We propose
another variant of combinatorial computation which is based on IPA. While we develop this
method in detail with respect to the conservative solution type of QCA, we show that combinatorial
computation can be extended to parsimonious solutions, with some limitations for the case of data
loss. Finally, we present the results of performance tests for all three methods—exhaustive enu-
meration, combinatorial computation under DPA, and combinatorial computation under IPA.

4.1 Replacing Exhaustive Enumeration by Combinatorial Computation

The method of exhaustive enumeration is based on the assumption of a fixed number of perturb-
ations, what we have defined as DPA in Section 3. Given DPA, how could a combinatorial
approach replace exhaustive enumeration and avoid having to pass through the resource-intensive
Phases IIa and IIb of QCA’s procedural protocol?

Before going into the formalities, let us begin with an example by way of developing a
conception of the problem. Suppose we wanted to compute the number of times in which
corrupting the value of exactly two cases on the endogenous factor in the data given in
Table 1 would lead to a solution different from the reference solution S1 when " ¼ 0:75 and
#¼ 1. For these throughput parameters, the reference solution would change if, and only if,
either two cases from block 1 were corrupted or at least one of Ireland, Belgium, Japan, and
New Zealand was corrupted.

There are 5
2

! "
¼ 10 pairs of cases that correspond to the first possibility. To compute the

number of pairs of cases corresponding to the second possibility, we can observe that there are
fifteen pairs of cases that contain Ireland, fifteen pairs that contain Belgium, fifteen pairs that
contain Japan, and fifteen pairs that contain New Zealand. This seems to suggest that, altogether,
there are 4 + 15 ¼ 60 pairs of cases that correspond to the second possibility. However, all pairs that
contain two of the four problematic cases mentioned above have been counted twice in this
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calculation. The exact number of pairs of cases is only 4 + 15* 4
2

! "
¼ 54. As both possibilities are

mutually exclusive, the two corresponding numbers can be added to find that exactly 10þ 54 ¼ 64
pairs of cases would lead to a change in the reference solution if the values of two cases on the
endogenous factor were corrupted.

We now present an abstraction of the above example in relation the conservative solution type.
With respect to measurement error in the endogenous factor, DPA implies that Fo is corrupted
for exactly D out of n cases in !. A number of D such perturbations lead to a solution different from
S if, and only if, they change the set of positive min-terms in Td. Informally, the probability yS
that S is retained is thus given by Equation (4):

yS ¼
number of sets of corruptions onD out of n cases that do not change the solution

number of sets of corruptions onDout of n cases
: ð4Þ

In the following, when saying that a particular set of corruptions on D cases affects a particular
min-term ‘, we mean that corrupting these D cases on Fo will cause ‘ to either enter S if it was not
included before or leave S if it was previously included.

The denominator of Equation (4) is a simple binomial coefficient; more complex is the numer-
ator. To count these sets, the inclusion–exclusion principlemust be invoked (cf. Hohn 1966, 261–63).
Let qDS denote the number of sets of corruptions on D cases that change S, and qD‘ the number of
sets of corruptions on D cases that affect ‘. More generally, let qD‘1;...;‘t denote the number of sets of
corruptions on D cases that affect the t min-terms ‘1; ‘2; . . .; ‘t simultaneously. Exploiting the
inclusion–exclusion principle, qDS is then given by Equation (5):

qDS ¼
X

‘

qD‘ *
X

f‘1;‘2g
qD‘1;‘2 þ

X

f‘1;‘2;‘3g
qD‘1;‘2;‘3 * . . .þ . . .* . . .,

X

f‘1;...;‘Dg
qD‘1;...;‘D ; ð5Þ

where each sum runs over all unordered subsets of all m non-remainder min-terms. For example,
the second sum has exactly m

2

! "
terms and the last sum has exactly m

D

! "
terms. To get some intuition

for why Equation (5) is true, note Equation (6):

qDS %
X

‘

qD‘ ; ð6Þ

which holds with equality if there is no set of corruptions on D cases that affects two or more min-
terms at once. If there is such a set, however, then it is counted twice on the right-hand side but only
once on the left-hand side of Equation (6), causing its statement to hold with strict inequality.
Subtracting the term starting with the second sum in Equation (5) corrects for this possible over-
counting. Yet, if there is at least one set of corruptions on D cases that affects three or more
min-terms, then this correction term introduces a similar effect in the opposite direction. The
term starting with the third sum in Equation (5) corrects for this possible under-counting, and
so forth.14

Consider now a fixed min-term ‘, of which there are c#‘ cases of Ff1go and c$‘ cases of Ff0go in !.
If ðc#‘ ; c$‘ Þ 2 A1, then ‘ is currently included in S, and the number of sets of corruptions on D cases
that affect it (corrupting the outcome of all cases in such a set causes ‘ to leave S) is given by
Equation (7):

q!
‘ ðc
#
‘ ; c$‘ ;DÞ ¼

X

ði; jÞ :
iþ j % D; ðc#‘ * iþ j; c$‘ * jþ iÞ =2A1

c#‘

i

 !
c$‘

j

 !
n* c#‘ * c$‘

D* i* j

 !

; ð7Þ

14No set of corruptions on D cases can affect more than D min-terms.
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where i ranges from 0 to c#‘ and j ranges from 0 to c$‘ .
15 Each summand is the number of ways

to choose a set of D cases that contains exactly i from the c#‘ cases of ‘ with Ff1go , exactly j from
the c$‘ cases of ‘ with Ff0go , and therefore exactly D* i* j cases from the remaining n* c#‘ * c$‘
cases in !.

Similarly, if ðc#‘ ; c
$
‘ Þ 2 A0, then ‘ is currently not included in S, and the number of sets of

corruptions on D cases that affect it (corrupting the outcome of all cases in such a set causes ‘ to
enter S) is given by Equation (8):

q/‘ ðc
#
‘ ; c$‘ ;DÞ ¼

X

ði; jÞ :
iþ j % D; ðc#‘ * iþ j; c$‘ * jþ iÞ 2 A1

c#‘

i

 !
c$‘

j

 !
n* c#‘ * c$‘

D* i* j

 !

: ð8Þ

Combining these two cases, Equation (9) is obtained:
X

‘

qD‘ ¼
X

1 % ‘ % m :
ðc#‘ ; c$‘ Þ 2 A1

q!
‘ þ

X

1 % ‘ % m :
ðc#‘ ; c$‘ Þ 2 A0

q/‘ : ð9Þ

By extension, the terms of the next large sum in Equation (5) are given by Equation (10):

qD‘1;‘2 ¼
X

ði1; j1; i2; j2Þ :
see text

c#‘1

i1

 !
c$‘1

j1

 !
c#‘2

i2

 !
c$‘2

j2

 !
n* c#‘1 * c$‘1 * c#‘2 * c$‘2

D* i1 * j1 * i2 * j2

 !

; ð10Þ

where the inner sum runs over all choices for the indices ði1; j1; i2; j2Þ such that i1 þ j1 þ i2 þ j2 % D
and for t¼ 1, 2 it holds that if ðc#‘t ; c

$
‘t
Þ 2 A1, then it and jt must satisfy ðc#‘t * it þ jt;

c$‘t * jt þ itÞ =2A0; and if ðc#‘t ; c
$
‘t
Þ 2 A0, then it and jt must satisfy ðc#‘t * it þ jt; c

$
‘t
* jt þ itÞ 2 A1.

16

By the same token yet more generally, the individual summands of the q-th term in Equation (5)
are given by Equation (11):

qD‘1;...;‘q ¼
X

ði1; j1; . . .; iq; jqÞ :
see text

 
Yq

t¼1

c#‘t

it

 !
c$‘t

jt

 !!

+

n*
Xq

t¼1
ðc#‘t þ c$‘t Þ

D*
Xq

t¼1
ðit þ jtÞ

0

BBBBB@

1

CCCCCA
; ð11Þ

where the inner sum runs over all choices for the indices ði1; j1; . . .; iq; jqÞ such that
Pq

t¼1ðit þ jtÞ % D
and for each t ¼ 1; . . .; q the respective condition from the two conditions given above holds.
Plugging Equation (11) into Equation (5) (for q ¼ 1; . . .;D), and observing that the numerator

of Equation (4) is n
D

! "
minus the inclusion–exclusion term qDS given in Equation (5), we obtain a

general method for computing the retention probability yS without resorting to exhaustive
enumeration.

The issue of data loss, where a fixed number D of cases are deleted from !, can be treated in a
similar fashion. To obtain yS; ðc#‘ * iþ j; c$‘ * jþ iÞ in Equations (7) and (8) only need to be
replaced by ðc#‘ * i; c$‘ * jÞ.17 To summarize at this point: we have derived functional laws

15Here, i represents the number of cases of min-term ‘ whose value on the endogenous factor is corrupted from F f1go to
F f0go , and j represents the number of cases of min-term ‘ whose value on the endogenous factor is corrupted from F f0go to
F f1go . Consequently, c#‘ * iþ j represents the number of cases of min-term ‘ still showing Ff1go post-corruption. In the
condition below the sum sign, instead of ð. . .; . . .Þ =2 A1, we could also have written ð. . .; . . .Þ 2 A0, as a positive min-term
that leaves S due to measurement error necessarily becomes a negative min-term, and not a remainder. As we shall see
later, stating the formulas in the way we do here has the advantage of making it easier to adapt them to the case of data
loss when positive min-terms can become remainders.

16This condition guarantees that ‘1 and ‘2 are indeed affected by corrupting both types of cases in each min-term as given
by i1; j1; i2; j2.

17Before, c#‘ * iþ j denoted the number of cases of min-term ‘ with positive outcome after corrupting the outcome of i
positive and j negative cases. Now, c#‘ * i denotes the number of cases of min-term ‘ with positive outcome after
deleting i positive and j negative cases.
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between conservative QCA solutions and two problems affecting the quality of data in interaction
with two fundamental throughput parameters. Contrary to Schneider and Wagemann (2012, 294),
who argue that “it is difficult to formulate general laws of robustness in QCA,” we have
demonstrated that such laws can indeed be formulated; and they can be applied to any data set.

For instance, going back to our example data set in Table 1, Fig. 2 plots the retention probability
of the QCA reference solution from Table 2 as a function of the inclusion cut-off " and the number
of corruptions D in panel 2a and the number of deletions D in panel 2b, for #¼ 1.18 Inclusion
cut-offs range quasi-continuously from 0.5 to 1 as cut-offs below 0.5 imply that for some min-term
more cases exist that do not show the outcome of interest than those that do. It is not reasonable to
classify such min-terms as positive, as Krogslund, Choi, and Poertner (2015, 34) have done. So as to
cover the full spectrum of retention probabilities down to under 5%, the number of corruptions
ranges from 1 to 5, and the number of deletions from 1 to 12.

For all inclusion cut-offs below 0.81 and D¼ 1, the probability that S1 is retained amounts to
75%.19 As corruptions proliferate, the retention probability decreases significantly, but not uni-
formly so. At inclusion cut-offs between 0.61 and 0.66, it is smaller than at any other value below
0.8. At three corruptions, it does not even reach 20%. As higher inclusion cut-offs generally put
more demands on the quality of the data for keeping the reference solution intact, probabilities
above an inclusion cut-off of 0.8 are lower than anywhere else for each number of corruptions. The
reason why they are invariant above this value lies in the simple fact that the most populated min-
term, block 1 in Table 3, contains five cases. As soon as any single case out of these five is
corrupted, the empirical inclusion score will drop to 0.8.

The pattern in Fig. 2b deviates from that in Fig. 2a. In particular, two differences are noticeable.
First, retention probabilities do not vary with inclusion cut-offs but only with the number of
deletions. The reason is that the original data in Table 1 are such that no block which corresponds
to a positive min-term in Table 3 contains a case of Wf0g. In other words, no deletion affects any
positive min-term’s empirical inclusion score. And second, retention probabilities for data loss
deteriorate at a much smaller rate than for measurement error. While five corruptions cause the
retention probability to drop below 5% across the entire range of inclusion cut-offs, only at 12
deletions does data loss lead to similarly low figures.

Fig. 2 Retention probabilities under DPA for data in Table 1.

18Note that the color range has been scaled for each figure individually. We have used lattice 0.20–29 to produce Figs. 2
and 3 in Section 4.2 (Sarkar 2008).

19For comparison, see table 4 in Hug (2013, 260).
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While combinatorial computation affords clear advantages over exhaustive enumeration in
terms of computational efficiency due to its avoidance of Phases IIa and IIb of QCA’s procedural
protocol, it still relies on DPA. But how plausible is DPA from an empirical point of view? After all,
knowing that one specific case is perturbed usually neither increases nor decreases the conditional
probability that one of the remaining cases is perturbed, yet the assumption of a fixed number of
errors entails exactly such an effect. For D¼ 2, perturbing one particular case out of n cases
decreases the conditional probability that any other given case is perturbed from originally 2=n
to 1=ðn* 1Þ if each case has the same a priori likelihood of experiencing a perturbation. However,
why should this be the case unless one has definite knowledge about the presence of such
dependencies? So as to avoid these strong implications, we propose a variant of combinatorial
computation that substitutes IPA for DPA, in which each case is perturbed with some fixed prob-
ability independently of what happens to all other cases. As it turns out, IPA is not only more
realistic than DPA, but combinatorial computation on the basis of the former instead of the latter is
also more easily tractable from a mathematical point of view and more efficient still.

4.2 Combinatorial Computation with IPA: Conservative Solutions

For the case of measurement error, Fo is corrupted independently under IPA with probability p for
each of the n cases in !. Conceptually, this is similar to corrupting exactly a p-fraction of all n cases
in ! if np is an integer, but it is, as argued above, more plausible from an empirical point of
view. For a given min-term ‘, the probability p‘ that exactly i of its c#‘ cases of Ff1go and exactly
j of its c$‘ cases of Ff0go are corrupted is given by Equation (12)20:

p‘ði; c#‘ ; j; c$‘ ; pÞ ¼
c#‘

i

 !

pið1* pÞc
#
‘ *i +

c$‘

j

 !

pjð1* pÞc
$
‘ *j: ð12Þ

Consider now a fixed min-term ‘, of which there are c#‘ cases of Ff1go and c$‘ cases of Ff0go in !.
If ðc#‘ ; c$‘ Þ 2 A1, then ‘ is currently included in S, and the probability p!

‘ that it leaves S in
consequence of corruptions on Fo is given by Equation (13):

p!
‘ ðc
#
‘ ; c$‘ ; pÞ ¼

X

ði; jÞ :
ðc#‘ * iþ j; c$‘ * jþ iÞ =2A1

p‘; ð13Þ

where i ranges from 0 to c#‘ and j from 0 to c$‘ .
21

Similarly, if ðc#‘ ; c$‘ Þ 2 A0, then ‘ is currently not included in S, and the probability p/‘ that it
enters S in consequence of corruptions on Fo is given by Equation (14):

p/‘ ðc
#
‘ ; c$‘ ; pÞ ¼

X

ði; jÞ :
ðc#‘ * iþ j; c$‘ * jþ iÞ 2 A1

p‘: ð14Þ

Because of the fact that the inclusion of each min-term ‘ into S in consequence of corruption, its
exclusion from S respectively, occurs independently, the probability that S remains unchanged is

20As the two events are independent from each other, their joint probability is the product of their individual
probabilities. The number of cases of Ff1go that are corrupted is binomially distributed with parameters c#‘ and p, and
the number of cases of Ff0go that are corrupted is binomially distributed with parameters c$‘ and p.

21As before, i represents the number of cases of min-term ‘ whose value on Fo is changed from Ff1go to Ff0go , and j
represents the number of cases of min-term ‘ whose value on Fo is changed from Ff0go to Ff1go . Because of the fact that the
events in question are pairwise disjoint, the total probability is given by the sum of the individual probabilities of these
events.
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the product of the complementary probabilities of those given in Equations (13) and (14). The
probability yS that S is retained is therefore given by Equation (15):

ySðc#; c$; pÞ ¼
Y

1 % ‘ % m :
ðc#‘ ; c$‘ Þ 2 A1

ð1* p!
‘ Þ +

Y

1 % ‘ % m :
ðc#‘ ; c$‘ Þ 2 A0

ð1* p/‘ Þ; ð15Þ

where c# ¼ ðc#1 ; . . .; c#mÞ and c$ ¼ ðc$1 ; . . .; c$mÞ denote the full vectors of respective case counts for
positive min-terms and negative min-terms, respectively.

With regard to data loss, the only modification required consists in replacing the expression
ðc#‘ * iþ j; c$‘ * jþ iÞ in Equations (13) and (14) by ðc#‘ * i; c$‘ * jÞ, as shown before in Section 4.1
for DPA.22

Figure 3 plots the retention probability of the QCA reference solution in Table 2 under IPA, as a
function of the inclusion cut-off " and the probability of corruption p in panel (a), and as a function
of the inclusion cut-off " and the probability of deletion p in panel (b), again for #¼ 1. As before in
Fig. 2, inclusion cut-offs range quasi-continuously from 0.5 to 1. The probability of corruption
ranges from 1% to 30%; the probability of deletion from 1% to 50%. Similar to Fig. 2, the
retention probability for the case of measurement error deteriorates at a higher rate than that

Fig. 3 Retention probabilities under IPA for data in Table 1.

Table 4 Polynomial terms of retention probability for the data set in Table 1

‘ c#=$ 0:5 < " % 0:6 0:6 < " % 2=3 2=3 < " % 0:75 0:75 < " % 0:8 0:8 < " % 1

1 5 ð1* pÞ5 ð1* pÞ5 ! ! ð1* pÞ5
þ 5pð1* pÞ4 þ 5pð1* pÞ4
þ 10p2ð1* pÞ3

2 1 1* p ! ! ! !
3 1 1* p ! ! ! !
4 4 1* p4 ! ! 1* p4 !

* 4p3ð1* pÞ
5 3 1* p3 ! 1* p3 ! !

* 3p2ð1* pÞ
6 1 1* p ! ! ! !
7 1 1* p ! ! ! !

22See also footnote 17.
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for data loss, but the retention probabilities for the latter are lower under IPA than under DPA,
and higher under IPA than under DPA for the former.

To complement the information conveyed in Fig. 3a, Table 4 lists the concrete polynomials with
respect to measurement error for the crucial ranges of ". The retention probability for a given range
of " is obtained as the product of the terms across all rows. An arrow in a table cell means that the
last polynomial to its left applies. For example, the retention probability for 0:75 < " % 0:8 and
p¼ 0.1 is obtained as the product of seven factors, one for each min-term ‘, the factor for ‘ ¼ 1
being 0:95 þ 5 + 0:1 + 0:94&0:9185 and the one for ‘ ¼ 4 being 1* 0:14 ¼ 0:9999. Altogether, one
obtains ySð0:1Þ&0:5836.

As the values of the terms increase for min-terms with c#‘ > 0 and decrease for min-terms with
c$‘ > 0 when going down the table, the retention probability as a whole neither increases nor
decreases monotonously with ", regardless of the value of p. For example, the retention probability
for 0:6 < " % 2=3 and p¼ 0.3 amounts to &0:09. On either side of this range of ", the probability is
higher, by more than two percentage points up to " ¼ 0:75, and by more than five percentage points
down to " > 0:5. A very similar retention probability for the case of 0:6 < " % 2=3 and p¼ 0.3 is
obtained, for example, when " > 0:8 and p&0:23. A higher inclusion cut-off along this range would
thus require the probability of error to be seven percentage points lower for keeping the retention
probability constant.

4.3 Combinatorial Computation with IPA: Parsimonious Solutions

Combinatorial computation under IPA is also possible for the parsimonious solution type, with
some limitations for the case of data loss. With respect to measurement error, Equation (15) still
applies for computing the retention probability of the parsimonious solution because the set of
remainders never changes, and any corruption on Fo also affects the parsimonious solution. In
other words, the retention probability of the parsimonious solution is exactly the same as the
retention probability of the conservative solution for the same set of data ! and the same through-
put parameter values.

For the case of data loss under the parsimonious solution type, it is only possible to derive the
probability yT that the truth table does not change, but not the probability yS that the solution
does not change, for the following reason: if a previously positive min-term turns into a remainder,
this may leave the parsimonious solution unaffected because that particular min-term is
reintroduced as a simplifying assumption by QMC at the beginning of Phase IIa.23 Similarly, a
previously negative min-term that turns into a remainder may not affect the parsimonious solution,
either, because its structure may be such that QMC cannot turn it into a simplifying assumption.24

Therefore, yT only provides a lower bound for yS.
Similar to the case of data loss under the conservative solution type (cf. Equation (13)), the

probability that a fixed positive min-term ‘ turns into a negative min-term or a remainder is given
by Equation (16):

p1!f0;?g‘ ðc#‘ ; c$‘ ; pÞ ¼
X

ði; jÞ :
ðc#‘ * i; c$‘ * jÞ =2A1

p‘; ð16Þ

but as negative min-terms may now also turn into remainders, the condition for each pair (i, j) in
the counterpart to Equation (14) must be modified such that Equation (17) results:

p0!f1;?g‘ ðc#‘ ; c$‘ ; pÞ ¼
X

ði; jÞ :
ðc#‘ * i; c$‘ * jÞ =2A0

p‘: ð17Þ

23 A simplifying assumption is a remainder that QMC temporarily converts to a positive min-term in Phase IIa in order
to be able to use it for minimization. Simplifying assumptions need not be covered in the prime implicant chart in Phase
IIb, unlike (proper) positive min-terms.

24A remainder that differs from a positive min-term on at least two positions cannot be used as a simplifying assumption.
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Then, the probability yT that Td is retained is given by Equation (18):

yTðc#; c$; pÞ ¼
Y

1 % ‘ % m :
ðc#‘ ; c

$
‘ Þ 2 A1

ð1* p1!f0;?g‘ Þ +
Y

1 % ‘ % m :
ðc#‘ ; c

$
‘ Þ 2 A0

ð1* p0!f1;?g‘ Þ: ð18Þ

In summary, for measurement error on the endogenous factor, the retention probabilities for par-
simonious solutions equal those for conservative solutions. With regard to data loss, however, it is
only possible to derive a lower bound on the retention probability by computing the probability
that the truth table will not change. Sometimes these probabilities will be equal; sometimes the
probability that the solution is retained will be higher. At the current state of research, it cannot be
determined which one is the case by purely combinatorial means.

4.4 Performance Considerations

Performance considerations with regard to analytical techniques are important for methodological
research as these techniques determine which tests are feasible given time, and possibly other
resource constraints. So as to address this issue, we have implemented a speed competition with
respect to the data in Table 1. Figure 4 plots the operation completion times, in seconds, of each
method—exhaustive enumeration (step function with circles), combinatorial computation under
DPA (step function with squares), and combinatorial computation under IPA (continuous line with
triangles)—for the case of measurement error. As the patterns for data loss are similar, we omit
them.25 For reasons of completeness, performance figures are shown over the full range of corrup-
tions on the outcome factor, the probability of corruption, respectively, but statistics beyond eight
corruptions, a probability of 0.5, respectively, are substantively irrelevant as even random value
assignment would be preferable to measurement in these circumstances. It is also important to note
that, for graphical reasons, the ordinate uses a logarithmic scale.

Fig. 4 Operation completion times of different methods of QCA sensitivity diagnostics for the analysis of
measurement error.

25Interested readers can produce these statistics as well as those for memory consumption using our replication code.
Performance tests have been conducted on a regular end-user machine under Windows XP, with an Intel i5-3470S CPU
2.9GHz processor.

Enhancing Sensitivity Diagnostics for QCA 117

�&&#%��)))��� �$�����"$���"$��&�$ %���&&#%����"��"$����������#�!� #(��

�")!�"������$" ��&&#%��)))��� �$�����"$���"$���������$�%%���
������
������"!������$�������&����		�����%'����&�&"�&����� �$������"$��&�$ %�"��'%����(���������&

https:/www.cambridge.org/core/terms
https://doi.org/10.1093/pan/mpv028
https:/www.cambridge.org/core


Hug (2013) has conducted his data experiment with only up to two perturbations, which requires
a rather small time investment of about 1.6 sec.26 However, as exhaustive enumeration cycles
through n

D

! "
runs of the procedural protocol of QCA from Phase I to Phase IIb, the more

serious the deficiencies in the data to be simulated, the longer the time and the larger the time
increments needed to complete an operation. A sensitivity diagnosis at eight corruptions takes
almost 3 min, 90 times as long as an analysis of the effects of two corruptions. The analysis of
all cases, from one to eight corruptions, requires about 9min.

In contrast to exhaustive enumeration, the resources consumed by a combinatorial approach
under DPA scale approximately with m

D

! "
. The number of non-remainder min-terms m, however, is

usually much lower than the number of cases n. The same relation applies to the constant factors
involved. In combinatorial computation, for each set of at most D non-remainder min-terms, only a
few arithmetic and logical operations are required, whereas exhaustive enumeration relies on a full
run of QMC from Phase I to Phase IIb for each set of corruptions on D cases, irrespective of
whether they change the solution or not. Particularly in situations of extreme model ambiguities,
which may already occur for research designs involving as few as six to eight exogenous factors, this
approach stretches operation completion times significantly.

At eight corruptions, combinatorial computation under DPA takes about 2.2 sec to complete its
operation, whereas all scenarios up to four corruptions require less than half a second. In total, an
analysis of one to eight corruptions is completed in under 10 sec. A method of combinatorial
computation that retains the assumption of dependent perturbations thus outperforms exhaustive
enumeration by a factor of 55.27

Once DPA is replaced by IPA, differentials in operation completion times between exhaustive
enumeration and combinatorial computation become huge. Slight variations in the completion
times of the latter method are substantively irrelevant and ascribable only to chance. Irrespective
of the magnitude at which the probability of corruption is fixed, a combinatorial approach to
analyzing the sensitivity of QCA reference solutions to measurement error for the data in
Table 1 merely takes 0.02 sec under IPA. This method thus not only produces figures that are
more realistic than those produced by combinatorial computation under DPA and exhaustive
enumeration due to its more plausible assumption, but it also is about 50 times faster than com-
binatorial computation under DPA, and about 2600 times faster than exhaustive enumeration for a
complete diagnosis of corruption scenarios at the point where data measurement is still preferable
to random value assignment.

5 Discussion and Conclusions

The topic of sensitivity diagnostics has recently been put high on the agenda of methodological
research into QCA. A significant number of studies have analyzed the reactivity of QCA to alter-
ations in discretionary parameter values set by the researcher, but only a few have taken a closer
look at the consequences of problems affecting the quality of data. However, almost all studies have
relied on the method of exhaustive enumeration, whereby all unique possibilities for changing a
given number of parameter values are systematically realized.

In this article, we have introduced a powerful alternative for evaluating the interaction effects
between two problems afflicting data quality and two discretionary parameters. By employing a
functional perspective on the stability of QCA reference solutions, we have developed the method
of combinatorial computation for the analysis of measurement error and data loss. This method
has not only proven computationally superior but, what is more, it also makes more plausible
assumptions about the nature of these ubiquitous problems of empirical research.

Our study aspires to merely mark the beginning of a more systematic literature on sensitivity
diagnostics in QCA. Future research should now extend its set-up to other QCA variants and

26We have integrated Hug’s original functions in a single function for the purpose of performance testing, including
improvements where appropriate. See the replication file for more details.

27Put differently, combinatorial computation under DPA consumes only about 1.8% of the resources required by ex-
haustive enumeration.
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problems of empirical data analysis. In the short run, generalizations to multi-value QCA
(Cronqvist and Berg-Schlosser 2009; Thiem 2013) and further research into the issue of data loss
under the parsimonious solution type appear to be the two most promising avenues. Sensitivity
evaluations of methods closely related to QCA, such as Coincidence Analysis, provide another
possibility as corresponding software has now become available (Ambuehl et al. 2015; Baumgartner
and Thiem 2015a). Last but not least, Monte Carlo simulations should be examined as a third
alternative to exhaustive enumeration and combinatorial computation.
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